中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1680-1696 DOI: 10.7536/PC200436 Previous Articles   Next Articles

• Review •

Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation

Xin Lin1,2, Fanfu Guan3,4, Jialin Wen3, Pan-Lin Shao1,3,**, Xumu Zhang3,**   

  1. 1. School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
    2. Harbin Institute of Technology, Harbin 150001, China
    3. Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
    4. Institute of Process Research and Development, School of Chemistry, University of Leeds, Leeds LS29JT, UK
  • Received: Revised: Online: Published:
  • Contact: Pan-Lin Shao, Xumu Zhang
  • Supported by:
    the Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis(ZDSYS20190902093215877); the Science, Technology and Innovation Commission of Shenzhen(JCYJ20190809160211372)
Richhtml ( 40 ) PDF ( 843 ) Cited
Export

EndNote

Ris

BibTeX

In this review, the synthesis and application of a series of tridentate ligands, such as f-amphox, f-ampha, f-amphol and f-amphamide, bearing ferrocene skeleton are introduced. The corresponding iridium complex based on these chiral P-N ligands can catalyze(functionalized) ketones with high TON(up to 1 000 000), excellent conversion(>99%) and enantioselectivity(>99% ee). The application of the f-series ligands has successfully realized the asymmetric synthesis of many chiral pharmaceutical intermediates such as Dinopramine, Phenylephrine and Salbutamol. These approaches are more efficient, generating less by-products and lower industrial emissions compared with the traditional routes.

Contents

1 Introduction

2 History of tridentate ferrocene ligands

2.1 The development of tridentate ligands

2.2 Special properties of ferrocene skeleton

2.3 Representative ligands containing ferrocene framework

3 f-amphox

3.1 The synthesis of f-amphox

3.2 Application of f-amphox in asymmetric hydrogenation

4 f-amphol

4.1 The synthesis of f-amphol

4.2 Application of f-amphol in asymmetric hydrogenation

5 f-ampha

5.1 The synthesis of f-ampha

5.2 Application of f-amphol in asymmetric hydrogenation

6 f-amphamide

6.1 The synthesis of f-amphamide

6.2 Application of f-amphamide in asymmetric hydrogenation

7 New mechanism insight about asymmetric hydrogenation

7.1 Hydrogenation mechanism of N—H structure

7.2 The chiral sources of f series

7.3 Transition state model of asymmetric hydrogenation

8 Conclusion and outlook

Scheme 1 Pybox ligand[7]
Scheme 2 Dominant tridentate ligands and their chiral induction models[8]
Scheme 3 SpiroPAP ligand[9]
Table 1 Comparison between catalyst Ir/f?amphox and [RuCl2(BINAP)(diamine)]
Scheme 4 Synthesis of the first planar chiral ligands (RC, SFC)-PPFA and (RC, SFC)-BPPFA[10]
Scheme 5 Reaction mechanism of atypical SN1 of(R)-Ugi’s amine [12]
Scheme 6 Chiral phosphine ligands with ferrocene framework[13,14,15,16,17]
Scheme 7 Dominant tridentate ligands and their chiral induction models[8, 22]
Fig.1 The structure of f-amphox
Scheme 8 The synthesis of f-amphox[23]
Scheme 9 Asymmetric hydrogenation of simple ketones catalyzed by Ir/f-amphox[23]
Scheme 10 Ir/f-amphox-catalyzed asymmetric hydrogenation of halogenated ketones and key transformation[24]
Scheme 11 Drug molecules containing chiral α-hydroxyamides
Scheme 12 Ir/f-amphox-catalyzed hydrogenation of α-Keto amide[25]
Scheme 13 Ir/f-amphox-catalyzed hydrogenation of β,γ-unsaturated α-ketoamide compounds[27]
Scheme 14 Synthesis of chiral homophenylalanine derivatives[26]
Scheme 15 Synthesis of intermediate Benazepril[27, 30]
Scheme 16 Drug molecules corresponding to hydrogenated products[32]
Scheme 17 Ir/f-amphox-catalyzed hydrogenation of α-imino ketones[32]
Scheme 18 The synthetic of (S)-Phenylephrine[29, 31]
Scheme 19 Ir/f-amphox-catalyzed hydrogenation of α-amino arylalkylketone[33]
Scheme 20 Synthesis of the key intermediate of clinical antitumor drug (S,S)-R116010[33, 35].
Scheme 21 The application of Ir/f-amphox in the synthesis of other drugs[36]
Scheme 22 Preparation of racemic Dinopramine in CN1237574A[37]
Scheme 23 Synthesis of Dinopramine developed by the Institute of Organic Chemistry of Tianbian Pharmaceutical Co., Ltd[38]
Scheme 24 The synthesis of Dinopramine disclosed by Tianbian Sanling Pharmaceutical Co., Ltd[39]
Scheme 25 Zhang et al. published asymmetric hydrogenation method for the preparation of Dinopramine[40]
Scheme 26 Synthesis of Dinopramine by asymmetric hydrogenation catalyzed by Ir/f-amphox[41]
Fig.2 The structure of f-amphol
Scheme 27 The synthesis of f-amphol[42]
Scheme 28 Asymmetric hydrogenation of aromatic ketones catalyzed in situ by Ir/f-amphol[43]
Scheme 29 Synthesis of Escalicarpine[44, 45]
Scheme 30 Asymmetric hydrogenation of α-substituted β-ketoesters by Ir/f-amphol[46]
Scheme 31 synthesis of chiral tetrahydropyrane[46]
Fig.3 The structure of f-ampha
Scheme 32 The synthsis of f-ampha[48]
Scheme 33 Asymmetric hydrogenation of aromatic ketones catalyzed by Ir/f-ampha[6]
Scheme 34 Asymmetric hydrogenation catalyzed by Ir/f-ampha[50]
Scheme 35 Drug molecules containing the structure of(R)-1-(3,5-bis(tri?uoromethyl)phenyl)ethanol
Scheme 36 Synthetic route for(R)-1-(3,5-bis(tri?uoromethyl)phenyl)ethanol using f-amphox, f-amphol, and f-ampha ligands
Fig.4 The structure of f-amphamide
Scheme 37 The synthesis of f-amphamide[51]
Scheme 38 Asymmetric hydrogenation of acetophenone series substrates by Ir/f-amphamide[51]
Fig.6 The hypothetical catalytic models of these tridentate ligands for asymmetric hydrogenation of simple ketone(X=H or alkali metal cation)[46, 50, 51, 58]
Fig.7 Transition state model of reduction of α-ketoamide over Ir/(SC, SC, RFC)-f-amphox[58]
Fig.8 a) Computed structures for TS(S) and TS(R), Ar=3,5-(tBu)2C6H3; b) Potential resistance diagram of Ir/f-ampha catalyst in transition state(red indicates greater potential resistance; blue indicates less potential resistance)[49]
Fig.9 Transition state model of reduction of α-substituted β-ketoesters over Ir/(SC, SC, RFC)-f-amphol[46]
Fig.10 Transition state model for reduction of acetophenone over Ir/(RC, SP)-f-amphamide catalyst[51]
[1]
林国强 ( Lin G Q). 手性合成不对称反应(Asymmetric reaction of chiral synthesis). 北京: 科学出版社( Beijing:Science Press), 2013.
[2]
丁奎岭 ( Ding K L), 范青华(Fan Q H). 不对称催化新概念与新方法(New concept and method of asymmetric catalysis). 北京: 化学工业出版社( Beijing:Chemical Industry Press), 2009.
[3]
Knowles W S. Acc. Chem. Res., 1983,16:106.
[4]
Noyori R , Takaya H. Acc. Chem. Res., 1990,23:345.
[5]
Zhang X M, Yu J F . CN 106632511A, 2016.
[6]
Zhang X M, Yu J F . CN 106632511A, 2017.
[7]
Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K . Organometallics, 1989,8:846.
[8]
Jiang Y T, Jiang Q Z, Zhang X M . Am. Chem. Soc., 1998,120:3817.
[9]
Xie J H, Liu X Y, Xie J B, Wang L X , Zhou Q L. Angew. Chem. Int. Ed., 2011,50:7329.
[10]
Hayashi T, Mise T, Fukushima M, Kagotani M, Nagashima N, Hamada Y, Matsumoto A, Kawakami S, Konishi M, Yamamoto K, Kumada M . B. Chem. Soc. Jpn., 1980,53:1138.
[11]
聂慧芳 ( Nie H F). 第四军医大学博士论文( Doctoral Dissertation of the Fourth Military Medical University), 2014.
[12]
Gleiter R, Bleiholder C, Rominger F . Organometallics, 2007,26:4850.
[13]
Sawamura M, Hamashima H, Sugawara M, Kuwano R, Ito Y . Organometallics, 1995,14:4549.
[14]
Togni A, Breutel C, Schnyder A, Spindler F, Landert H, Tijani A . Am. Chem. Soc., 1994,116:4062.
[15]
Almena Perea J J, Börner A, Knochel P . Tetrahedron Lett., 1998,39:8073.
[16]
Ireland T, Grossheimann G, Wieser-Jeunesse C , Knochel P. Angew. Chem. Int. Ed., 1999,38:3212.
[17]
Sturm T, Weissensteiner W , Spindler F. Adv. Synth. Catal., 2003,345:160.
[18]
Chen W , McCormack P J, Mohammed K, Mbafor W, Roberts S M, Whittall J. Angew. Chem. Int. Ed., 2007,46:4141.
[19]
Chen W, Spindler F, Pugin B , Nettekoven U. Angew. Chem. Int. Ed., 2013,52:8652.
[20]
Ling F, Nian S F, Chen J C, Luo W J, Wang Z, Lv Y P, Zhong W H . Org. Chem., 2018,83:10749.
[21]
宋定国 ( Song D G), 年三飞(Nian S F), 陈佳琛(Chen J S), 罗文俊(Luo W J), 王泽(Wang Z), 凌飞(Ling F), 钟为慧(Zhong W H). 中国医药工业杂志( Chinese Journal of Pharmaceuticals), 2020,51(02):189.
[22]
Li W, Hou G H, Wang C J, Jiang Y T, Zhang X M . Chem Commun, 2010,46(22):3979
[23]
Wu W L, Liu S D, Duan M, Tan X F, Chen C Y, Xie Y, Lan Y, Dong X Q , Zhang X M. Org. Lett., 2016,18:2938.
[24]
Yin C C, Wu W L, Hu Y, Tan X F, You C, Liu Y H, Chen Z Y, Dong X Q , Zhang X M. Adv. Synth. Catal., 2018,360:2119.
[25]
Zhang X M, Gu G X . CN 107417562 A, 2017.
[26]
Ding X B, Wang S M . CN 108546238 A, 2018.
[27]
Wang S M, Yu Y N, Wen J L, Zhang X M . Synlett, 2018,29:2203.
[28]
Qin C, Chen X S, Hou C J, Liu H Z, Liu Y J, Huang D Z , Hu X P. Synthetic Commun., 2018,48:672.
[29]
Hu Y, Wu W L, Dong X Q , Zhang X M. Org. Chem. Front., 2017,4:1499.
[30]
Zhao B G, Han Z B , Ding K L. Angew. Chem. Int. Ed., 2013,52:4744.
[31]
Yuan M L, Xie J H, Yang X H, Zhou Q L . Synthesis -Stuttgart, 2014,46:2910.
[32]
Zhang X M, Hu Y, Wu W L, Dong X Q . CN 107021884 A, 2017.
[33]
Wu W L, You C, Yin C C, Liu Y H, Dong X Q , Zhang X M. Org. Lett., 2017,19:2548.
[34]
Wu W L, Xie Y, Li P, Li X X, Liu Y H, Dong X Q , Zhang X M. Org. Chem. Front., 2017,4:555.
[35]
Mulvihill M J, Cesario C, Smith V, Beck P, Nigro A . Org. Chem., 2004,69:5124.
[36]
Zhang X M . CN 105153229 B, 2015.
[37]
Chen D M, Sun H T, Zeng Z Y, Jiang Y Z . CN 98112034. 2, 1999.
[38]
Ikezaki M, Umino N, Gaino M, Aoe K, Iwakuma T, Ohishi T . YAKUGAKU ZASSHI, 1986,106:80.
[39]
Kawaguchi T, Saito K, Matsuki K, Iwakuma T , Takeda M. Chem. Pharm. Bull., 1993,41:639.
[40]
Shang G, Liu D, Allen S E, Yang Q, Zhang X M . Chem-Eur J., 2007,13:7780.
[41]
Ma B D, Shao P L, Wu C, Wang J, Zhang X M . CN 110590583A, 2019.
[42]
Yu J F, Duan M, Wu W L, Qi X T, Xue P, Lan Y, Dong X Q, Zhang X M. . Chem-Eur J., 2017,23:970.
[43]
Zhang X M Y J F. CN 105732725 A, 2016.
[44]
Yin C C, Dong X Q , Zhang X M. Adv. Synth. Catal., 2018,360:4319.
[45]
Ravinder B, Reddy S R, Sridhar M, Mohan M M, Srinivas K, Reddy A P, Bandichhor R . Tetrahedron Lett., 2013,54:2841.
[46]
Gu G X, Lu J X, Yu O R, Wen J L, Yin Q , Zhang X M. Org. Lett., 2018,20:1888.
[47]
Tao L, Yin C C, Dong X Q , Zhang X M. Org. Biomol. Chem., 2019,17:785.
[48]
Yu J F, Long J, Yang Y H, Wu W L, Xue P, Chung L W, Dong X Q , Zhang X M. Org. Lett., 2017,19:690.
[49]
Gu G X, Yang T L, Lu J X, Wen J L, Dang L , Zhang X M. Org. Chem. Front., 2018,5:1209.
[50]
Gong Q, Wen J L , Zhang X M. Chem. Sci., 2019,10:6350.
[51]
Liang Z Q, Yang T L, Gu G X, Dang L, Zhang X M . Chinese Journal of Chemistry, 2018,36:851.
[52]
Noyori R, Sandoval C A, Muniz K , Ohkuma T. Philos. T. Roy. Soc. A, 2005,363:901.
[53]
Noyori R, Kitamura M , Ohkuma T. Proc Natl. Acad. Sci. U. S. A., 2004,101:5356.
[54]
Noyori R , Ohkuma T. Angew. Chem. Int. Ed., 2001,40:40.
[55]
Dub P A, Henson N J, Martin R L, Gordon J C . Am. Chem. Soc., 2014,136:3505.
[56]
Dub P A, Scott B L, Gordon J C . Am. Chem. Soc., 2017,139(3):1245.
[57]
Gu G X, Yang T L, Yu O R, Qan H, Wang J, Wen J L, Dang L , Zhang X M. Org. Lett., 2017,19:5920.
[1] Kim Hyongdo, Wang Li, Yu Haojie, Tong Rongbai, Zhou . Synthesis and Application of Main-or Side-Chain Ferrocene-Based Polymers [J]. Progress in Chemistry, 2016, 28(1): 51-57.
[2] Wang Jianjun, Ding Hengchun, Ni Peihong, Dai Lixing, Gao Qiang. Ferrocene-Based Epoxy Derivatives [J]. Progress in Chemistry, 2015, 27(7): 853-860.
[3] Guo Jian Zhuang Shun Wu Kaiqiang Yuan Yaofeng. Ferroceneacetylene: a Versatile Building Block in Optoelectronic Molecules [J]. Progress in Chemistry, 2009, 21(12): 2589-2594.
[4] Chen Chuanjie Wei Zuojun Li Yan Ren Qilong. Asymmetric Hydrogenation of Unfunctionalized Alkenes Catalyzed by Ir-N,P-Ligands Catalysts [J]. Progress in Chemistry, 2009, 21(05): 990-996.
[5] Shi Jianbing1|Zhi Junge2|Tong Bin1|Zhao Wei1|Shen Jinbo1|Dong Yuping1**. Full-Conjugated Ferrocene-Based Polymers [J]. Progress in Chemistry, 2008, 20(04): 558-564.
[6] Zhende Liu,Xuchang He**. The Application of Chiral Ferrocene Ligands in Palladium-Catalyzed Asymmetric Reactions [J]. Progress in Chemistry, 2006, 18(11): 1489-1497.