中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 245-257 DOI: 10.7536/PC180539 Previous Articles   Next Articles

Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism

Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li**()   

  1. 1. College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • Received: Online: Published:
  • Contact: Yuangang Li
  • About author:
  • Supported by:
    Open Foundation of Key Laboratory of Colloids, Interface and Chemical Thermodynamics of Chinese Academy of Sciences
Richhtml ( 96 ) PDF ( 2181 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemical reduction of carbon dioxide into ethylene not only can alleviate the greenhouse effect but also obtain ethylene as one of the high value-added petrochemicals. The article reviews recent advances in the field of carbon dioxide electro-catalytic reduction to produce ethylene, and mainly focus on the electro-catalysts for the reduction of carbon dioxide into ethylene. Copper-based catalyst is an active ingredient for highly selective generation of ethylene. Doping, modifying or decorating copper-based catalyst can increase the stability and activity of the catalyst while maintaining the high selectivity of the catalyst for ethylene. The mechanism for ethylene formation under electro-catalytic conditions and the effect of reaction conditions on ethylene selectivity are also included. Three adsorptive states of carbon dioxide on the surface of catalyst and the mechanism of ethylene formation on the Cu(100) crystal face are briefly described. The effects of electrode potential, temperature, pressure, the composition of electrolyte and pH on ethylene selectivity are also considered. Finally, the issues in the field of catalyst development and research for reducing carbon dioxide into ethylene are summarized and prospected.

Table 1 Standard potentials of CO2 reduction to various products in aqueous solutions at 1.0 atm and 25 ℃[5].(Adapted with permission, Royal Society of Chemistry ?2014.)
Fig. 1 Proposed reaction pathway for carbon dioxide reduction products[6].(Adapted with permission, American Chemical Society ?2015.)
Fig. 2 The DFT calculated free energy change of CO2 and CO protonation without glycine(blue line) and with zwitterionic glycine(red line)[20].(Adapted with permission, Royal Society of Chemistry ?2016.)
Fig. 3 (a)The method of Cu2+ ion battery cycling;(b) SEM image of Cu2+ ion battery cycling[36].(Adapted with permission, Springer Nature ?2018.)
Fig. 4 Optical images of the Cu skeleton type of catalysts:(a) as-received Cu;(b) electropolished Cu;(c) annealed Cu;(d) functional Cu foam electrodeposited on Cu skeleton[37].(Adapted with permission, American Chemical Society ?2017.)
Fig. 5 TEM of(a) ordered,(b) disordered,(c) phase separated; Combined EDS elemental maps of Cu(red) and Pd(green) of(d) ordered,(e) disordered,(f) phase Separated[38].(Adapted with permission, American Chemical Society ?2017.)
Fig. 6 (a) Faradaic efficiency of CO2 reduction products;(b) structure of copper-porphyrin molecular catalysts[42].(Adapted with permission, American Chemical Society ?2016.)
Fig. 7 Structure of CuPc molecular catalysts[43].(Adapted with permission, Springer Nature ?2018.)
Fig. 8 Schematic illustration of Pd-induced surface restrictoring that can avoid the accumulation of carbonaceous species on Cu surface[57].(Adapted with permission, John Wiley & Sons,Inc. ?2018.)
Fig. 9 Schematic of the cathode portion of a gas diffusion electrode[58].(Adapted with permission, AAAS ?2018.)
Fig. 10 Possible structures of adsorbed CO2
Fig. 11 One explanation for the catalysis of ethylene formation on Cu(100) type copper crystals[61].(Adapted with permission, American Chemical Society ?2012.)
Fig. 12 Proposed mechanism for the electrochemical reduction of carbon dioxide to ethylene on copper[61].(Adapted with permission, American Chemical Society ?2012.)
Fig. 13 The EDS images of catalysts[29].(Adapted with permission, Springer Nature ?2016.)
Table 2 Current efficiencies of the products in CO2 reduction in 0.1 M bicarbonate solutions
Fig. 14 Stability test of the cathode electrode[58].(Adapted with permission, AAAS ?2018.)
Table 3 Faradaic efficiencies for the products obtained in the electrochemical CO2 reduction and the selectivity of ethylene on a Cu electrode in solutions of various concentrations
Fig. 15 Current efficiency for each product on various potentials[6].(Adapted with permission, American Chemical Society ?2015.)
Fig. 16 Product current densities of CO2 reduction as a function of electrolyte concentration(a), and pressure(b)[69].(Adapted with permission, Wiley-VCH Verlag GmbH & Co. KGa?2015.)
[1]
Lund H . Energy, 2007,32:912.
[2]
Doney S C, Balch W M, Fabry V J, Feely R A . Oceanography, 2009,22:16. https://www.ncbi.nlm.nih.gov/pubmed/21386404

doi: 10.1088/0953-8984/22/16/162201 pmid: 21386404
[3]
McMichael A J, Woodruff R E, Hales S . Lancet, 2006,367:859. https://www.ncbi.nlm.nih.gov/pubmed/16530580

doi: 10.1016/S0140-6736(06)68079-3 pmid: 16530580
[4]
Boot-Handford M E, Abanades J C, Anthony E J, Blunt M J, Brandani S, Dowell N M, Fernández J R, Ferrari M C, Gross R, Hallett J P, Haszeldine R S, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter R T J, Pourkashanian M, Rochelle G T, Shah N, Yao J G, Fennell P S . Energ. Environ. Sci., 2014,7:130.
[5]
Qiao J, Liu Y, Hong F, Zhang J . Chem. Soc. Rev., 2014,43:631. https://www.ncbi.nlm.nih.gov/pubmed/24186433

doi: 10.1039/c3cs60323g pmid: 24186433
[6]
Kortlever R, Shen J, Schouten K J, Calle-Vallejo F, Koper M T . J. Phys. Chem. Lett., 2017,6:4073. https://www.ncbi.nlm.nih.gov/pubmed/26722779

doi: 10.1021/acs.jpclett.5b01559 pmid: 26722779
[7]
Zuman P . Microchem. J., 1986,34:245.
[8]
Ogura K, Oohara R, Kudo Y . Chin. J. Cancer, 2011,258:238.
[9]
Zhang L, Zhao Z J, Gong J . Angew. Chem. Int. Ed., 2017,56:38.
[10]
Hori Y, Kikuchi K, Suzuki S . Chem. Lett., 1985,14:1695.
[11]
Hong J, Zhang W, Ren J, Xu R . Anal. Methods, 2013,5:1086.
[12]
刘孟岩(Liu M Y), 王元双(Wang Y S), 邓雯(Deng W), 温珍海(Weng Z H) . 化学进展 (Progress in Chemistry), 2018,30:389.
[13]
Hori Y, Murata A, Takahashi R, Suzuki S . J. Am. Chem. Soc., 1987,109:16.
[14]
Kuhl K P, Cave E R, Abram D N, Jaramillo T F . Energ. Environ. Sci., 2012,5:7050.
[15]
Hori Y, Murata A, Takahashi R, Suzuki S . J. Chem. Soc. Chem. Commun., 1988,19:17.
[16]
Hori Y, Takahashi I, Koga O, Hoshi N . J. Mol. Catal. A-Chem., 2003,199:39.
[17]
Roberts F S, Kuhl K P, Nilsson A . Angew. Chem. Int. Ed., 2015,54:5179. https://www.ncbi.nlm.nih.gov/pubmed/25728325

doi: 10.1002/anie.201412214 pmid: 25728325
[18]
Hara K, Tsuneto A, Kudo A, Sakata T . J. Electroanal. Chem., 1997,434:239.
[19]
Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Norskov J K, Chorkendorff I . Phys. Chem. Chem. Phys., 2012,14:76. https://www.ncbi.nlm.nih.gov/pubmed/22071504

doi: 10.1039/c1cp22700a pmid: 22071504
[20]
Xie M S, Xia B Y, Li Y, Yan Y, Yang Y, Sun Q, Chan S H, Fisher A, Wang X . Energ. Environ. Sci., 2016,9:1687. https://www.ncbi.nlm.nih.gov/pubmed/12403017

doi: 10.1081/ese-120015430 pmid: 12403017
[21]
Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov J K . Energ. Environ. Sci., 2010,3:1311.
[22]
Shibata M, Furuya N . Electrochimi. Acta, 2003,48:3953.
[23]
Cook R L, Macduff R C, Sammells A F . J. Electrochem. Soc., 1987,18:2375.
[24]
Kim D, Kley C S, Li Y, Yang P . Proc. Natl. Acad. Sci. U.S. A., 2017,114:10560. https://www.ncbi.nlm.nih.gov/pubmed/28923930

doi: 10.1073/pnas.1711493114 pmid: 28923930
[25]
Baturina O A, Lu Q, Padilla M A, Xin L, Li W, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins G E . ACS Catal., 2014,4:3682.
[26]
Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S . Nano Energy, 2016,24:1.
[27]
Cook R L, Macduff R C, Sammells A F . J. Electrochem. Soc., 1990,137:607.
[28]
Ikeda S, Ito K, Noda H, Rusop M, Soga T . AIP Conf. Proce., 2009,1136:108.
[29]
Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R . Nat. Commun., 2016,7:12123. https://www.ncbi.nlm.nih.gov/pubmed/27356485

doi: 10.1038/ncomms12123 pmid: 27356485
[30]
Eilert A, Cavalca F, Roberts F S, Osterwalder J, Liu C, Favaro M, Crumlin E J, Ogasawara H, Friebel D, Pettersson L G M . J. Phys. Chem. Lett., 2017,8:285. https://www.ncbi.nlm.nih.gov/pubmed/27983864

doi: 10.1021/acs.jpclett.6b02273 pmid: 27983864
[31]
Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S . ACS Catal., 2015,5:2814.
[32]
Li C W, Kanan M W . J. Am. Chem. Soc., 2012,134:7231. https://www.ncbi.nlm.nih.gov/pubmed/22506621

doi: 10.1021/ja3010978 pmid: 22506621
[33]
Kim D, Lee S, Ocon J D, Jeong B, Lee J K, Lee J . Phys. Chem. Chem. Phys., 2015,17:824. https://www.ncbi.nlm.nih.gov/pubmed/25297636

doi: 10.1039/c4cp03172e pmid: 25297636
[34]
Kas R, Kortlever R, Milbrat A, Koper M T M, Mul G, Baltrusaitis J . Phys. Chem. Chem. Phys., 2014,16:12194. https://www.ncbi.nlm.nih.gov/pubmed/24817571

doi: 10.1039/c4cp01520g pmid: 24817571
[35]
Zhu D D, Liu J L, Qiao S Z . Adv. Mater., 2016,47:3423.
[36]
Jiang K, Sandberg R B, Akey A J, Liu X, Bell D C, Norskov J K, Chan K, Wang H . Nat. Catal., 2018,1:111.
[37]
Dutta A, Rahaman M, Mohos M, Zanetti A, Broekmann P . ACS Catal., 2017,7:5431.
[38]
Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J . J. Am. Chem. Soc., 2017,139:47. https://www.ncbi.nlm.nih.gov/pubmed/27958727

doi: 10.1021/jacs.6b10740 pmid: 27958727
[39]
Ishimaru S, Shiratsuchi R, Nogami G . J. Electrochem. Soc., 2000,147:1864.
[40]
Chang Z Y, Huo S J, He J M, Fang J H . Surf. Interfaces, 2017,6:116.
[41]
Christophe J, Doneux T, Buess-Herman C . Electrocatal., 2012,3:139.
[42]
Weng Z, Jiang J, Wu Y, Wu Z, Guo X, Materna K L, Liu W, Batista V S, Brudvig G W, Wang H . J. Am. Chem. Soc., 2016,138:8076. https://www.ncbi.nlm.nih.gov/pubmed/27310487

doi: 10.1021/jacs.6b04746 pmid: 27310487
[43]
Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S, Wang X F, Ma Q, Brudvig G W, Batista V S, Liang Y, Feng Z, Wang H . Nat. Commun., 2018,9:415. https://www.ncbi.nlm.nih.gov/pubmed/29379087

doi: 10.1038/s41467-018-02819-7 pmid: 29379087
[44]
Wu J, Ma S, Sun J, Gold J I, Tiwary C S, Kim B, Zhu L, Chopra N, Odeh I N, Vajtai R . Nat. Commun., 2016,7:13869. https://www.ncbi.nlm.nih.gov/pubmed/27958290

doi: 10.1038/ncomms13869 pmid: 27958290
[45]
Kaneco S, Ueno Y, Katsumata H, Suzuki T, Ohta K . Chem. Eng. J., 2006,119:107.
[46]
Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K . Catal. Today, 2009,148:329.
[47]
Kudo A, Nakagawa S, Tsuneta A, Sakata T . J. Electrochem. Soc., 1993,140:1541.
[48]
Chu D, Qin G, Yuan X, Xu M, Zheng P, Lu J . ChemSusChem, 2008,1:205. https://www.ncbi.nlm.nih.gov/pubmed/18605207

doi: 10.1002/cssc.200700052 pmid: 18605207
[49]
Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K . Bull. Chem. Soc. Jpn., 1990,64:1959.
[50]
Gattrell M, Gupta N, Co A . J. Electroanal. Chem., 2006,594:1.
[51]
Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K . Electrochimica. Acta, 2005,50:54.
[52]
Xie J F, Huang Y X, Li W W, Song X N, Xiong L, Yu H Q . Electrochimi. Acta, 2014,139:137.
[53]
Chen C, Handoko A, Wan J, Ma L, Ren D, Yeo B . Catal. Sci. Technol., 2014,5:161.
[54]
Kim D, Resasco J, Yu Y, Asiri A M, Yang P . Nat. Commun., 2014,5:4948. https://www.ncbi.nlm.nih.gov/pubmed/25208828

doi: 10.1038/ncomms5948 pmid: 25208828
[55]
Ma M, Djanashvili K, Smith W A . Angew. Chem. Int. Ed., 2016,55:6680. https://www.ncbi.nlm.nih.gov/pubmed/27098996

doi: 10.1002/anie.201601282 pmid: 27098996
[56]
Wuttig A, Surendranath Y . ACS Catal., 2015,5:4479.
[57]
Weng Z, Zhang X, Wu Y, Huo S, Jiang J, Liu W, He G, Liang Y, Wang H . Angew. Chem. Int. Ed., 2017,56:13135. https://www.ncbi.nlm.nih.gov/pubmed/28805993

doi: 10.1002/anie.201707478 pmid: 28805993
[58]
DinhC T, Burdyny T, Kibria M G, Seifitokaldani A, Gabardo M C, Arquer G P F, Kiani A, Edwards P J, Luna D P, Bushuyev S O, Zou C, Quintero-Berm-dez R, Pang Y, Sinton D, Sargent H E . Science, 2018,360:783. https://www.ncbi.nlm.nih.gov/pubmed/29773749

doi: 10.1126/science.aas9100 pmid: 29773749
[59]
Freund H J, Roberts M W . Sur. Sci. Rep., 1996,25:225.
[60]
Hori Y, Takahashi I, Osamu K A, Hoshi N . J. Phys. Chem. B, 2014,106:15.
[61]
Schouten K J P, Qin Z, Gallent E P, Koper M T M . J. Am. Chem. Soc., 2012,134:9864. https://www.ncbi.nlm.nih.gov/pubmed/22670713

doi: 10.1021/ja302668n pmid: 22670713
[62]
Schouten K, Kwon Y, Ham C, Qin Z, Koper M T . Chem. Sci., 2011,2:108
[63]
Verdaguer-Casadevall A, Li C W, Johansson T P, Scott S B, McKeown J T, Kumar M, Stephens I E, Kanan M W, Chorkendorff I . J. Am. Chem. Soc., 2015,137:9808. https://www.ncbi.nlm.nih.gov/pubmed/26196863

doi: 10.1021/jacs.5b06227 pmid: 26196863
[64]
Li C W, Ciston J, Kanan M W . Nature, 2014,508:504. https://www.ncbi.nlm.nih.gov/pubmed/24717429

doi: 10.1038/nature13249 pmid: 24717429
[65]
Lee S, Lee J . ChemSusChem, 2016,9:333. https://www.ncbi.nlm.nih.gov/pubmed/26610065

doi: 10.1002/cssc.201501112 pmid: 26610065
[66]
Shibata H, Moulijn J A, Mul G . Catal. Lett., 2008,123:186.
[67]
Murata A, Hori Y . Bull. Chem. Soc. Jpn., 2006,64:123.
[68]
Yano H, Tanaka T, Nakayama M, Ogura K . J. Electroanal. Chem., 2004,565:287.
[69]
Kas R, Kortlever R, Yılmaz H, Koper M T M, Mul G . ChemElectroChem, 2015,2:354.
[70]
Naitoh A, Ohta K, Mizuno T, Yoshida H, Sakai M, Noda H . Electrochimi. Acta, 1993,38, 2177.
[71]
Hori Y, Kikuchi K, Murata A, Suzuki S . Chem. Lett., 1986,17:897.
[72]
Varela A S, Kroschel M, Reier T, Strasser P . Catal. Today, 2016,260:8.
[73]
Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum T C, Chen X . Nanoscale, 2016,8:11284. https://www.ncbi.nlm.nih.gov/pubmed/27189633

doi: 10.1039/c6nr02430k pmid: 27189633
[74]
Li Y, Wang R, Li H, Wei X, Feng J, Liu K, Dang Y, Zhou A . J. Phys. Chem. C, 2015,119:20283.
[75]
Li Y, Wei X, Yan X, Cai J, Zhou A, Yang M, Liu K . Phys. Chem. Chem. Phys., 2016,18:10255. https://www.ncbi.nlm.nih.gov/pubmed/27022001

doi: 10.1039/c6cp00353b pmid: 27022001
[76]
Shi Y, Li Y, Wei X, Feng J, Li H, Zhou W . J. Electron. Mater., 2017,46:6878.
[77]
Li Y, Feng J, Li H, Wei X, Wang R, Zhou A . Int. J. Hydrogen Energ., 2016,41:4096.
[78]
Li Y, Wei X, Li H, Wang R, Feng J, Yun H, Zhou A . RSC Adv., 2015,5:14074.
[79]
Chang X, Wang T, Gong J . Energ. Environ. Sci., 2016,9:7.
[80]
Royer M . Compt. Rend, 1870,70:731.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[6] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[7] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[8] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[9] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[10] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[11] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[12] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[13] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[14] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[15] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.