中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 398-409 DOI: 10.7536/PC170810 Previous Articles   Next Articles

• Review •

Electrocatalytic Reduction of CO2 on Copper-Based Catalysts

Mengyan Liu1,2, Yuanshuang Wang1,2, Wen Deng2, Zhenhai Wen2*   

  1. 1. College of Chemistry, Fuzhou University, Fuzhou 35000;
    2. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by 1000 Plan Professorship for Young Talents in China, the Hundred Talents Program of Fujian Province, and the Fujian Science and Technology Key Project (No. 2016H0043).
PDF ( 2375 ) Cited
Export

EndNote

Ris

BibTeX

The increasing greenhouse gas CO2 emission poses a potential threat to global climate. Electrochemical reduction of CO2 (CO2RR) to useful chemical products, an artificial way of carbon recycling, opens up new possibilities of utilization of CO2 and represents one promising solution that significantly improve the environment and promotes sustainable development. However, it remains a challenge to convert CO2 to valued products with high efficiency and selectivity while suppressing the H2 evolution(HER) side reaction. Copper attracts considerable attention currently because it displays interesting electrocatalytic performances for the reduction of CO2. Progress related to the electrocatalytic reduction of CO2 in the past few years, and their advantages and disadvantages are reviewed, and thermodynamics and kinetics research of CO2RR is described,with a focus on the progress in CO2RR on copper-based electrodes, which includes Cu electrode, Cu metal-organic frameworks electrode and Cu-based electrodes modified by oxidation, alloying, nanocrystalization and surface modification, even if the CO2 electrocatalytic reduction reaction mechanism remains uncertain. Finally, challenges and future research opportunities for tuning the selective conversion of CO2 on copper-based catalysts with high efficiency are also discussed.
Contents
1 Introduction
2 Research on the mechanism of electrocatalytic reduction of CO2
2.1 Thermodynamics and kinetics of electrochemical reduction of CO2
2.2 Research on the reaction mechanism of electrochemical reduction of CO2
3 Electrochemical reduction of CO2 on copper-based electrocatalysts
3.1 Copper electrode
3.2 Copper metal-organic framework electrode
3.3 Modified copper electrode
4 Conclusion

CLC Number: 

[1] 王红霞(Wang H X). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2016.
[2] Logan B E, Rabaey K. Science, 2012, 337:686.
[3] Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4:1259.
[4] Centi G, Quadrelli E A, Perathoner S. Energy Environ. Sci., 2013, 6:1711.
[5] Sheng W C, Kattel S,Yao S Y, Yan B H, Liang Z X, Hawxhurst C J, Wu Q Y, Chen J G. Energy Environ. Sci., 2017, 10:1180.
[6] Kumar B, Atal V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56:3645.
[7] 李博(Li B).兰州大学博士论文(Doctoral Dissertation of Lanzhou University), 2015.
[8] 郭辰辰(Guo C C), 董卫果(Dong W G). 煤质技术(Coal Quality Technology), 2016(s1):65.
[9] 靳治良(Jin Y L), 钱玲(Qian L), 吕功煊(Lv G X). 化学进展(Progress in Chemistry), 2010, 22:1102.
[10] Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas C G. ACS Catalysis, 2012, 2:770.
[11] Genovese C, Ampelli C, Perathoner S, Centi G. J. Catal., 2013, 308:237.
[12] Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40:3703.
[13] Genovese C, Ampelli C, Perathoner S, Centi G. J. Energy Chem., 2013, 22:202.
[14] Won D H, Shin H, Koh J, Chung J, Lee H S, Kim H, Woo S I. Angew. Chem. Int. Ed., 2016, 55:9297.
[15] Ouyang T, Huang H H, Wang J W, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2016, 56:738.
[16] Safaei T S, Mepham A, Zheng X L, Pang Y J, Dinh C T, Liu M, Sinton D, Kelley S O, Sargent E H. Nano Lett., 2016, 16:7224.
[17] Stewart C, Hessami M A. Energy Convers. Manage., 2005, 46:403.
[18] Huan T N, Simon P, Rousse G, Genois I, Artero V, Fontecave M. Chem. Sci., 2017, 8:742.
[19] Agarwal A S, Zhai Y M, Hill D, Sridhar N. ChemSusChem, 2011, 4:1301.
[20] Cheng D J, Negreiros F R, Apra E, Fortunelli A. ChemSusChem, 2013, 6:944.
[21] Jitaru M, Lowy D A, Toma M, Toma B C, Oniciu L. J. Appl. Electrochem, 1997, 27:875.
[22] Zhang L, Zhao Z J, Gong J. Angew. Chem. Int. Ed., 2017, 56:11326.
[23] Wu J J, Ma S C, Sun J, Gold J I, Tiwary C, Kim B S, Zhu L Y, Chopra N, Odeh I N, Vajtai R, Yu A Z, Luo R, Lou J, Ding G Q, Kenis P J, Ajayan P M. Nat, Commun, 2016, 7:13869.
[24] Wang S B, Wang X C. Angew. Chem. Int. Ed., 2016, 55:2308.
[25] Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher J S, Mayer M T, Luo J S, Grätzel M. Nat. Energy, 2017, 2:17087.
[26] Li C W, Kanan M W. J. Am. Chem. Soc., 2012, 134:7231.
[27] Birdja Y Y, Koper M T. J. Am. Chem. Soc., 2017, 139:2030.
[28] Slamet,Nasution H W, Purnama E, Riyani K, Gunlazuardi J. World Applied Sciences Journal, 2009, 6:112.
[29] Merino-Garcia I, Albo J, Irabien A. Energy Technol-Ger, 2017, 5:922.
[30] Yang K D, Ko W R, Lee J H, Kim S J, Lee H, Lee M H, Nam K T. Angew. Chem. Int. Ed., 2017, 56:796.
[31] Hori Y. Electrochemical CO2 Reduction on Metal Electrods.Modern Aspects of Electrochemistry.No.42.Vayenas O(ed.).Springer, New York, 2008. 89.
[32] Schneider J, Jia H F, Muckerman J T, Fujita E. Chem. Soc. Rev., 2012, 41:2036.
[33] Limkrailassiri K. Doctoral Dissertation of University of California, Berkeley. 2013.
[34] Benson E E, Kubiak C P, Sathrum A J, Smieja J M. Chem. Soc. Rev., 2009, 38:89.
[35] Zhang X, Wu Z S, Zhang X, Li L W, Li Y Y, Xu H M, Li X X, Yu X L, Zhang Z S, Liang Y Y, Wang H L. Nat. Commun., 2017, 8:14675.
[36] Qiao J L, Liu Y Y, Hong F, Zhang J J. Chem. Soc. Rev., 2014, 43:631.
[37] Hori Y, Murata A, Takahashi R. J. Chem. Soc. Farad. Tran.1, 1989, 85:2309.
[38] Dewulf D W, Jin T, Bard A J. J. Electrochem. Soc., 1989, 136:1686.
[39] Zhao K, Liu Y M, Quan X, Chen S, Yu H T. ACS Appl. Mater. Interfaces, 2017, 9:5302.
[40] Zuo Z J, Sun L L, Huang W, Han P D, Li Z H. Appl. Catal. A:Gen., 2010, 375:181.
[41] Gupta N, Gattrell M, MacDougall B. J. Appl. Electrochem., 2005, 36:161.
[42] Yang Y X, Evans J, Rodriguez J A, White M G, Liu P. Phys. Chem. Chem. Phys., 2010, 12:9909.
[43] Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov J K. Energy Environ. Sci., 2010, 3:1311.
[44] Durand W J, Peterson A A, Studt F, Abild-Pedersen F, Norskov J K. Surf. Sci., 2011, 605:1354.
[45] Schouten K J P, Kwon Y, van der Ham C J M, Qin Z, Koper M T M. Chem. Sci., 2011, 2:1902.
[46] Nie X W, Esopi M R, Janik M J, Asthagiri A. Angew. Chem. Int. Ed., 2013, 52:2459.
[47] Hori Y, Kikuchi K, Suzuki S. Chem. Lett., 1985, 14:1695.
[48] Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrochim. Acta., 1994, 39:1833.
[49] Lee J, Kwon Y, Machunda R L, Lee H J. Chem. Asian J., 2009, 4:1516.
[50] Kuhl K P, Cave E R, Abram D N, Jaramillo T F. Energy Environ. Sci., 2012, 5:7050.
[51] Hori Y, Wakebe H, Tsukamoto T, Koga O. Surf. Sci., 1995, 335:258.
[52] Takahashi I, Koga O, Hoshi N, Hori Y. J. Electroanal. Chem., 2002, 533:135.
[53] Hori Y, Takahashi I, Koga O, Hoshi N. J. Mol. Catal. A Chem., 2003, 199:39.
[54] Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Norskov J K, Chorkendorff I. Phys. Chem. Chem. Phys., 2012, 14:76.
[55] Kas R, Kortlever R, Milbrat A, Koper M T, Mul G, Baltrusaitis J. Phys. Chem. Chem. Phys., 2014, 16:12194.
[56] Li C W, Ciston J, Kanan M W. Nature, 2014, 508:504.
[57] Sen S, Liu D, Palmore G T R. ACS Catalysis, 2014, 4:3091.
[58] Dutta A, Rahaman M, Luedi N C, Mohos M, Broekmann P. ACS Catalysis, 2016, 6:3804.
[59] Sui P C, Djilali N. J. Power Sources, 2006, 161:294.
[60] Lu Q, Lattanzi M W, Chen Y, Kou X, Li W, Fan X, Unruh K M, Chen J G, Xiao J Q. Angew. Chem. Int. Ed., 2011, 50:6847.
[61] Hayes J R, Hodge A M, Biener J, Hamza A V, Sieradzki K. J. Mater. Res., 2011, 21:2611.
[62] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341:1230444.
[63] Wang S B, Wang X C. Small, 2015, 11:3097.
[64] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Progress in Chemistry), 2014, 27:174.
[65] He H M, Perman J A, Zhu G S, Ma S Q. Small, 2016, 12:6309.
[66] Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E. Science, 2010, 327:313.
[67] Kumar R S, Kumar S S, Kulandainathan M A. Electrochem. Commun., 2012, 25:70.
[68] Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y. ECS Electrochem Lett., 2012, 1:H17.
[69] Siegfried B M J, Choi K S. Adv. Mater., 2004, 16:1743.
[70] Qu J P, Zhang X G, Wang Y G, Xie C X. Electrochim. Acta, 2005, 50:3576.
[71] Yano J, Morita T, Shimano K, Nagami Y, Yamasaki S. J. Solid State Electrochem., 2006, 11:554.
[72] Frese K W. J. Electrochem. Soc., 1991, 138:3338.
[73] Yano J, Yamasaki S. J. Appl. Electrochem., 2008, 38:1721.
[74] Chen C S, Handoko A D, Wan J H, Ma L, Ren D, Yeo B S. Catalysis Science & Technology, 2015, 5:161.
[75] Ren D, Deng Y L, Handoko A D, Chen C S, Malkhandi S, Yeo B S. ACS Catalysis. 2015, 5:2814.
[76] Mistry H, Reske R, Zeng Z H, Zhao Z J, Greeley J, Strasser P, Cuenya B R. J. Am. Chem. Soc., 2014, 136:16473.
[77] Canfield D,Frese K W. J. Electrochem. Soc., 1983, 130:1772.
[78] Le M, Ren M M, Zhang Z Y, Sprunger P T, Kurtz R L, Flake J C. J. Electrochem. Soc., 2011, 158:E45.
[79] Huan T N, Simon P, Benayad A, Guetaz L, Artero V, Fontecave M. Chemistry (Easton), 2016, 22:14029.
[80] Watanabe M, Shibate M, Katoh A. J. Electroanal. Chem., 1991, 35:319.
[81] Christophe J, Doneux T, Buess-Herman C. Electrocatalysis, 2012, 3:139.
[82] Kim D H, Resasco J, Yu Y, Asiri A M, Yang P D. Nat Commun, 2014, 5:4948.
[83] Guo X, Zhang Y, Deng C, Li X, Xue Y, Yan Y M, Sun K. Chem. Commun, 2015, 51:1345.
[84] Wang X Y, Liu S Q, Huang K L, Feng Q J, Ye D L, Liu B, Liu J L, Jin G H. Chin. Chem. Lett., 2010, 21:987.
[85] Zhang C S, Kang P, Bakir M, Lapides A M, Dares C J, Meyer T J. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:15809.
[86] Rasul S, Anjum D H, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. Angew. Chem. Int. Ed., 2015, 54:2146.
[87] Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. ACS Catalysis, 2016, 6:2842.
[88] Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J. J. Am. Chem. Soc., 2017, 139:47.
[89] Raciti D, Livi K J, Wang C. Nano Lett., 2015, 15:6829.
[90] Ma M, Djanashvili K, Smith W A. Angew. Chem. Int. Ed., 2016, 55:6680.
[91] Reske R, Mistry H, Behafarid F, Roldan C B, Strasser P. J. Am. Chem. Soc., 2014, 136:6978.
[92] Ma M, Djanashvili K, Smith W A. Phys. Chem. Chem. Phys., 2015, 17:20861.
[93] Raciti D, Cao L, Livi K J T, Rottmann P F, Tang X, Li C Y, Hicks Z, Bowen K H, Hemker K J, Mueller T, Wang C. ACS Chem. Biol., 2017, 7:4467.
[94] Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. J. Am. Chem. Soc., 2014, 136:16132.
[95] Feng X F, Jiang K L, Fan S S, Kanan M W. ACS Cent. Sci., 2016, 2:169.
[96] Dou L T, Cui F, Yu Y, Khanarian G, Eaton S W, Yang Q, Resasco J, Schildknecht C, Schierle-Arndt K, Yang P D. ACS Nano, 2016, 10:2600.
[97] Li Y F, Cui F, Ross M B, Kim D Y, Sun Y C, Yang P D. Nano Lett., 2017, 17:1312.
[98] Xie M S, Xia B Y, Li Y W, Yan Y, Yang Y H, Sun Q, Chan S H, Fisher A, Wang X. Energy Environ. Sci., 2016, 9:1687.
[99] Lan Y C, Gai C, Kenis P J A, Lu J X. ChemElectroChem, 2014, 1:1577.
[100] Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. J. Am. Chem. Soc., 2017, 139:4290.
[101] Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S. Nano Energy, 2016, 24:1.
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[4] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[5] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[6] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[9] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[10] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[11] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[12] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
[13] Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*. Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments [J]. Progress in Chemistry, 2018, 30(5): 628-638.
[14] Liping Chen, Rong Yang, Yinglin Yan, Chaojiang Fan, Mangmang Shi, Yunhua Xu. The Control of Reduction Degree of Graphene Oxide [J]. Progress in Chemistry, 2018, 30(12): 1930-1941.
[15] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.