中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1075-1085 DOI: 10.7536/PC190213 Previous Articles   Next Articles

Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation

Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li**()   

  1. Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Online: Published:
  • Contact: Ying Li
  • About author:
  • Supported by:
    Natural Science Foundation of Zhejiang Province(LY17B030010)
Richhtml ( 19 ) PDF ( 779 ) Cited
Export

EndNote

Ris

BibTeX

Transformation of the biomass into platform molecules and further conversion into fuel and chemicals is one of the important ways of biomass utilization. The research progress on aqueous-phase hydrogenation and highly active and stable catalysts for aqueous-phase catalytic reactions are summarized. The challenges of the heterogenous catalysts used in aqueous reaction such as the loss of active components, catalyst surface reconstruction, toxicity, etc., and the preparation strategy of highly active and stable catalysts, such as the surface reconstruction, surface carbon coating, enhancement of the interaction between the support and the metal active components, and new structure catalysts design are summarized. The further research direction on catalysts design for aqueous-phase hydrogenation reaction are discussed.

Fig. 1 Schematic illustration of the simulated water structure at a water/hydrocarbon(oil) interface. Color key: dark gray spheres=C, light gray=H, red=O. Dotted lines are hydrogen bonds. The transparent rectangle depicts the interface between water and the hydrocarbon[14]
Fig. 2 Partial dissociation of H2O on Ru(0001): STM images of(a) intact water stripes after deposition at 145 K and its transformation to(b) partially dissociated H2O-OH stripes after 30 min annealing at 145 K. In the DFT optimized structures shown, the OH group is highlighted by an orange O atom[16]
Fig. 3 Acetone and water co-adsorbed to Ru(0001). This adsorption configuration of acetone is stabilized by 0.18 eV through formation of a hydrogen bond(depicted with annotated line). Dark brown spheres=C, pink=H, red=O, light brown=Ru[22]
Fig. 4 Schematic of mass transfer in a three-phase reaction[27]
Table 1 Summary of catalytic performance of various catalysts in aqueous phase hydrogenation
Type of catalyst Catalyst Substrate Reaction condition Conv./% ref
noble metals Ru-MC-g benzoic acid H2(4 MPa), 120 ℃, 2 h 94 35
Rh/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 80 37
Pt/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 64 37
Ru/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 70 37
Ru/Al2O3 levulinic acid H2(2 MPa), 50 ℃, 1 h 22 49
Ir/CNT levulinic acid H2(2 MPa), 50 ℃, 1 h 96 49
Ru/CNT levulinic acid H2(2 MPa), 50 ℃, 1 h 65 47
Ru/C guaiacol H2(4 MPa), 250 ℃, 2 h 56 50
Rh/C guaiacol H2(4 MPa), 250 ℃, 2 h 15 50
Pt/C guaiacol H2(4 MPa), 250 ℃, 2 h 2 50
Pd/C guaiacol H2(4 MPa), 250 ℃, 2 h 0 50
Pd/C phenol H2(4 MPa), 250 ℃, 2 h 82 50
Ru/CNT cellobiose H2(5 MPa), 185 ℃, 3 h 88 51
metal oxides and metal composites 4%Rh-MoOx/SiO2(Mo/Rh=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Ir-MoOx/SiO2(Mo/Ir=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Ru-MoOx/SiO2(Mo/Ru=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Rh-MoOx/SiO2(Mo/Rh=0.13) lactic acid H2(6 MPa), 80 ℃, 6 h 78 38
Pt-ReOx/C sorbitol H2(6.21 MPa), 245 ℃, WHSV(2.92 h-1) 99 41
Pt-ReOx/Zr-P sorbitol H2(6.21 MPa), 160 ℃, WHSV(0.16 h-1) 92 42
Pd1Fe3/Zr-P sorbitol H2(6.21 MPa), 245 ℃, WHSV(2.92 h-1) 16 44
Pd/WOx/-Al2O3 guaiacol H2(7 MPa), 300 ℃, 150 min 100 52
non-noble metals Raney Ni levulinate esters H-donor(2-PrOH), room temperature, Ar, 2 h 87 40
20%Cu/ZrO2-OG(oxalate-gel) levulinic acid/
formic acid
formic acid, N2(1 MPa), 180 ℃, 5 h 60 41
5 wt%Ni-HAP levulinic acid H2(0.5 MPa), 70 ℃, 4 h 18 53
10%Ni/Al2O3 levulinic acid H2(3 MPa), 200 ℃, 3 h 29 54
7.9 mol%Co/AC vanillin/formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 6 45
Co@NC-700
(7.9 mol%Co)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 96 48
Fe@NC-700
(7.9 mol% Fe)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 10 48
Ni@NC-700
(7.9 mol% Ni)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 37 48
Cu@NC-700
(7.9 mol% Cu)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 4 48
4Co/Al2O3(nCo/nAl=4) levulinic acid H2(5 MPa), 180 ℃, 3 h 6 55
Fig. 5 A facile approach for coating supported metal catalysts[67]
Fig. 6 Preparation of graphitic carbon/oxide composites that are applicable to powders as well as pellets[68]
Fig. 7 Schematic illustration of the preparation process of Ru-MC catalyst[72]
Fig. 8 Schematic illustration of the synthesis of the Co@NC-x catalyst[48]
Fig. 9 Schematic illustration of the synthesis of hollow yolk-shell Co@C-N nanoreactors[73]
[1]
Dwivedi A D, Rai R K, Gupta K, Singh , S K . ChemCatChem, 2017,9:1930. http://doi.wiley.com/10.1002/cctc.201700056

doi: 10.1002/cctc.201700056
[2]
Wu K J, Wu Y L, Chen Y, Chen, H, Wang, J L, Yang M D . ChemSusChem, 2016,9:1355. https://www.ncbi.nlm.nih.gov/pubmed/27158985

doi: 10.1002/cssc.201600013 pmid: 27158985
[3]
Michel C, Zaffran J, Ruppert A M, Matras-Michalska J, Jedrzejczyk M, Grams J, Sautet P . Chem. Commun., 2014,50:12450. https://www.ncbi.nlm.nih.gov/pubmed/24980805

doi: 10.1039/c4cc04401k pmid: 24980805
[4]
Li C J, Chen L . Chem. Soc. Rev., 2006,35:68. https://www.ncbi.nlm.nih.gov/pubmed/16365643

doi: 10.1039/b507207g pmid: 16365643
[5]
Tran H V, Doan H A, Chandler B D, Grabow L C . Curr. Opin. Chem. Eng., 2016,13:100. https://linkinghub.elsevier.com/retrieve/pii/S2211339816300521

doi: 10.1016/j.coche.2016.08.010
[6]
Niemeier J, Engel R V, Rose M . Green Chem., 2017,19:2839. http://xlink.rsc.org/?DOI=C7GC00422B

doi: 10.1039/C7GC00422B
[7]
Davies P R . Top. Catal., 2016,59:671. http://link.springer.com/10.1007/s11244-016-0539-5

doi: 10.1007/s11244-016-0539-5
[8]
Michel C, Gallezot P . ACS Catal., 2015,5:4130. https://pubs.acs.org/doi/10.1021/acscatal.5b00707

doi: 10.1021/acscatal.5b00707
[9]
Tan J J, Cui J L, Cui X J, Deng T S, Li X Q, Zhu Y L, Li Y W . ACS Catal., 2015,5:7379. https://pubs.acs.org/doi/10.1021/acscatal.5b02170

doi: 10.1021/acscatal.5b02170
[10]
Liu C, Zhang C, Liu K . Biomass Bioenerg., 2015,72:189. https://linkinghub.elsevier.com/retrieve/pii/S0961953414004929

doi: 10.1016/j.biombioe.2014.11.005
[11]
Li B, Li L, Zhao C . Green Chem., 2017,19:5412. http://xlink.rsc.org/?DOI=C7GC02414B

doi: 10.1039/C7GC02414B
[12]
Patel A J, Patrick Varilly P, Chandler D . J. Phys. Chem. B, 2010,114:1632. https://pubs.acs.org/doi/10.1021/jp909048f

doi: 10.1021/jp909048f
[13]
Zhang X, Sewell T E, Glatz B, Sarupria S, Getman R B . Catal. Today, 2017,285:57. https://linkinghub.elsevier.com/retrieve/pii/S0920586117300639

doi: 10.1016/j.cattod.2017.02.002
[14]
Strazdaite S, Versluis J, Bakker H J . J. Chem. Phys., 2015,143:084708. https://www.ncbi.nlm.nih.gov/pubmed/26328868

doi: 10.1063/1.4929905 pmid: 26328868
[15]
Sádaba I, Granados M L, Riisager A, Taarning E . Green Chem., 2015,17:4133. http://xlink.rsc.org/?DOI=C5GC00804B

doi: 10.1039/C5GC00804B
[16]
Chang C R, Huang Z Q, Li J, . Wiley Interdiscip. Rev. Comput. Mol. Sci., 2016,6:679.
[17]
Zhu C, Kais S, Zeng X C, Francisco J S, Gladich I . J. Am. Chem. Soc., 2016,139:27. https://pubs.acs.org/doi/10.1021/jacs.6b10208

doi: 10.1021/jacs.6b10208
[18]
Struijk J, Dangremond M, Lucasderegt W J M, Scholten J J F . Appl. Catal. A, 1992,83:263. https://linkinghub.elsevier.com/retrieve/pii/0926860X9285039E

doi: 10.1016/0926-860X(92)85039-E
[19]
Struijk J, Moene R, Vanderkamp T, Scholten J J F . Appl. Catal. A, 1992,8:77.
[20]
Xie S H, Qiao M H, Li H X, Wang W J, Deng J F . Appl. Catal. A, 1999,176:129. https://linkinghub.elsevier.com/retrieve/pii/S0926860X98002324

doi: 10.1016/S0926-860X(98)00232-4
[21]
孙海杰(Sun H J), 陈凌霞(Chen L X), 黄振旭(Huang Z X), 刘寿长(Liu S C), 刘仲毅(Liu Z Y) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2015,36(10):1969. 6ff76495-4340-4c59-bb37-a58fdfff26fahttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract25851.shtml

doi: 10.7503/cjcu20150288
[22]
Michel C, Zaffran J, Ruppert A M, Michalska M J, Jędrzejczyk M, Grams J, Sautet P . Chem. Commun., 2014,50:12450. https://www.ncbi.nlm.nih.gov/pubmed/24980805

doi: 10.1039/c4cc04401k pmid: 24980805
[23]
Akpa B S, D’Agostino C, Gladden L F, Hindle K, Manyar H, McGregor J, Li R, Neurock M, Sinha N, Stitt E H, Weber D, Zeitler J A, Rooney D W . J. Catal., 2012,289:30. https://linkinghub.elsevier.com/retrieve/pii/S0021951712000139

doi: 10.1016/j.jcat.2012.01.011
[24]
Cukierman S . BBA-Bioenergetics, 2006,1757:876. https://www.ncbi.nlm.nih.gov/pubmed/16414007

doi: 10.1016/j.bbabio.2005.12.001 pmid: 16414007
[25]
Merte L R, Peng G, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F . Science, 2012,336:889. https://www.ncbi.nlm.nih.gov/pubmed/22605771

doi: 10.1126/science.1219468 pmid: 22605771
[26]
Tan J J, Cui J L, Deng T S, Cui X J, Ding G Q, Zhu Y L, Li Y W . ChemCatChem, 2015,7:508. http://doi.wiley.com/10.1002/cctc.v7.3

doi: 10.1002/cctc.v7.3
[27]
Zhang Z G, Jackson J E, Miller D J . Ind. Eng. Chem. Res., 2002,41:691. https://pubs.acs.org/doi/10.1021/ie0104767

doi: 10.1021/ie0104767
[28]
Bindwal A B, Vaidya P D . Energ. Fuel., 2014,28:3357. ef32ff1c-92f1-425e-b6f9-24fdd20dee95http://dx.doi.org/10.1021/ef500498z

doi: 10.1021/ef500498z
[29]
Ramachandran P A, Chaudhari R V . Three-Phase Catalytic Reactors. New York: Gordon and Breach Science Publishers, 1983. 15.
[30]
Wei Z Z, Gong Y T, Xiong T Y, Zhang P F, Li H R, Wang Y . Catal. Sci. Technol., 2015,5:397. http://xlink.rsc.org/?DOI=C4CY00946K

doi: 10.1039/C4CY00946K
[31]
樊金龙(Fan J L), 侯玉翠(Hou Y C), 吴卫泽(Wu W Z), 张建伟(Zhang J W) . 中国科学:化学( Science China Chemistry), 2010,40(9):1387. 6b7712f1-565a-4838-983e-2322116956afhttp://chem.scichina.com:8081/sciB//CN/abstract/abstract418803.shtml
[32]
Deng L, Li J, Lai D M, Fu Y, Guo Q X . Angew. Chem. Int. Edit., 2009,121:6651.
[33]
Sato K, Ikekame H, Tosaka Y, Tsuzukiyama k, Togami Y, Fujisawa M . J. Magn. Magn. Mater., 1993,126:572. https://linkinghub.elsevier.com/retrieve/pii/0304885393906904

doi: 10.1016/0304-8853(93)90690-4
[34]
Toda T, Igarashi H, Uchida H, Watanabe M . J. Electrochem. Soc., 1999,146:3750. https://iopscience.iop.org/article/10.1149/1.1392544

doi: 10.1149/1.1392544
[35]
Jiang Z L, Lan G J, Liu X Y, Tang H D, Li Y . Catal. Sci. Technol., 2016: 7259.
[36]
Olcay H, Xu L, Xu Y, Huber G W . ChemSusChem, 2010,2:1420.
[37]
Yao G, Wu G J, Dai W L, Guan N J, Li L D . Fuel, 2015,150:175. https://linkinghub.elsevier.com/retrieve/pii/S0016236115001763

doi: 10.1016/j.fuel.2015.02.035
[38]
Li M X, Li G Y, Li N, Wang A Q, Dong W J, Wang X D, Cong Y . Chem. Commun., 2014,50:1414. http://xlink.rsc.org/?DOI=c3cc48236g

doi: 10.1039/c3cc48236g
[39]
Shimizu K, Kanno S, Kon K . Green Chem., 2014,16:3899. 0e62f601-4653-46eb-bfef-1d4547205518http://dx.doi.org/10.1039/c4gc00735b

doi: 10.1039/c4gc00735b
[40]
Yang Z, Huang Y B, Guo Q, Fu Y . Chem. Commun., 2013,49:5328. https://www.ncbi.nlm.nih.gov/pubmed/23648801

doi: 10.1039/c3cc40980e pmid: 23648801
[41]
Yuan J, Li S S, Yu L, Liu Y M, Cao Y, He H Y, Fan K N . Energ. Environ. Sci., 2013,6:3308. http://xlink.rsc.org/?DOI=c3ee40857d

doi: 10.1039/c3ee40857d
[42]
Hengne A M, Rode C V . Green Chem., 2012,14:1064. 7c5a228e-bbe6-4ef3-9505-0a559bd93ba2http://dx.doi.org/10.1039/c2gc16558a

doi: 10.1039/c2gc16558a
[43]
Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S . ChemSusChem, 2011,4:1749. https://www.ncbi.nlm.nih.gov/pubmed/22114041

doi: 10.1002/cssc.201100380 pmid: 22114041
[44]
Jagadeesh R V, Surkus A E, Junge H, Pohl M M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M . Science, 2013,342:1073. b7ad1002-0863-41e1-be8f-fe7f38f3f96ehttp://dx.doi.org/10.1126/science.1242642

doi: 10.1126/science.1242642
[45]
Friedfeld M R, Shevlin M, Hoyt J M, Krska S W, Tudge M T, Chirik P J . ChemInForm, 2013,342:1076.
[46]
Zuo W, Lough A J, Li Y F, Morris R H . Science, 2013,342:1080. a137ad19-ec7c-4205-a0fe-3995e0069968http://dx.doi.org/10.1126/science.1243550

doi: 10.1126/science.1243550
[47]
Zuo W, Morris R H . Nat. Protoc., 2015,10:241. https://www.ncbi.nlm.nih.gov/pubmed/25569331

doi: 10.1038/nprot.2015.012 pmid: 25569331
[48]
Yang H H, Nie R F, Xia W, Yu X L, Jin D F, Lu X H, Zhou D, Xia Q H . Green Chem., 2017,19:5714. http://xlink.rsc.org/?DOI=C7GC02648J

doi: 10.1039/C7GC02648J
[49]
Du X L, Liu Y M, Wang J Q, Cao Y, Fan K N . Chin. J. Catal., 2013,34:993. https://linkinghub.elsevier.com/retrieve/pii/S1872206711605226

doi: 10.1016/S1872-2067(11)60522-6
[50]
Mu Wei, Ben H X, Du X T, Zhang X D, Hu F, Liu W, Ar Ragauskas A J, Deng Y L . Bioresource Technol., 2014,173:6. 8b85e245-4f91-43ea-b6ca-b650ce637e05http://dx.doi.org/10.1016/j.biortech.2014.09.067

doi: 10.1016/j.biortech.2014.09.067
[51]
Deng W P, Liu M, Tan X S, Zhang Q H, Wang Y . J. Catal., 2010,271:22. https://linkinghub.elsevier.com/retrieve/pii/S0021951710000321

doi: 10.1016/j.jcat.2010.01.024
[52]
Hong Y K, Lee D W, Eom H J, Lee K Y . Appl. Catal. B: Environ., 2014,150:438.
[53]
Sudhakara M, Kantama M L, Jaya V S, Ramineni K, Ramanujachary K V, Akula V . Catal. Commun., 2014,50:101. https://linkinghub.elsevier.com/retrieve/pii/S1566736714000995

doi: 10.1016/j.catcom.2014.03.005
[54]
Fu J, Sheng D, Lu X Y . Catalysts, 2016,6:6. http://www.mdpi.com/2073-4344/6/1/6

doi: 10.3390/catal6010006
[55]
Long X D, Sun P, Li Z L, Lang R, Xia C G, Li F W . Chin. J. Catal., 2015,36:1512. https://linkinghub.elsevier.com/retrieve/pii/S1872206715609342

doi: 10.1016/S1872-2067(15)60934-2
[56]
徐圣(Xun S), 廖梦尘(Liao M C), 曾虹燕(Ceng H Y), 朱培函(Zhu P H), 张治青(Zhang Z Q), 黄清军(Huang H J), 刘小军(Liu X J), 张伟(Zhang W) . 化工学报( Journal of Chemical Industry and Engineering(China)), 2014,65(8):2863. 9278fa98-3038-4ead-8a2e-9406411918ebhttp://www.hgxb.com.cn/CN/abstract/abstract15783.shtml

doi: 10.3969/j.issn.0438-1157.2014.08.001
[57]
Xiong H F, Pham H N, Datye A K . Green Chem., 2015,45:4627.
[58]
Pham H N, Anderson A E, Johnson R L, Schmidt-Rohr K, Datye A K . KAngew. Chem. Int. Edit., 2012,51:13163.
[59]
Ravenelle R M, Copeland J R, Kim W G, Crittenden, J C, Sievers C . ACS Catal., 2011,1:552. a10729db-0a5a-4766-acf7-25069db433ebhttp://dx.doi.org/10.1021/cs1001515

doi: 10.1021/cs1001515
[60]
Zahir M H, Sato K, Mori H, Iwamoto Y, Nomura M, Nakao S . J. Am. Ceram. Soc., 2006,89:2874.
[61]
Palella B I, Lisi L, Pirone R, Russo, G, Notaro, M . Catal., 2006,47:728.
[62]
Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K . App. Catal. A Gen., 2011,397:153. https://linkinghub.elsevier.com/retrieve/pii/S0926860X11001116

doi: 10.1016/j.apcata.2011.02.026
[63]
Yu H, Nan L, Lan Z, Li D F, Xu X Z, Wu S, Di Y, Li C J, Zou Y C, Yu Y, Xiao F S . J. Phy. Chem. B, 2003,107:7551. https://pubs.acs.org/doi/10.1021/jp026899j

doi: 10.1021/jp026899j
[64]
Mokaya R . J. Phy. Chem. B, 2000,104:8279. https://pubs.acs.org/doi/10.1021/jp001494p

doi: 10.1021/jp001494p
[65]
Liu J, Yang Q, Kapoor M P, Setoyama N, Inagaki S, Yang J, Zhang L . J. Phy. Chem. B, 2005,109:12250. https://www.ncbi.nlm.nih.gov/pubmed/16852511

doi: 10.1021/jp0509109 pmid: 16852511
[66]
Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E . J. Am. Chem. Soc., 2012,134:8570. https://pubs.acs.org/doi/10.1021/ja3015082

doi: 10.1021/ja3015082
[67]
Pham H N, Anderson A E, Johnson R L, Hien N, Schwartz T J, O’Neill B J, Duan P, Schmidt-Rohr K, Dumesic J A, Datye D K . ACS Catal., 2015,5:4546. https://pubs.acs.org/doi/10.1021/acscatal.5b00329

doi: 10.1021/acscatal.5b00329
[68]
Xiong H, Schwartz T J, Andersen N I, Datye A K . Angew. Chem. Int. Edit., 2015,54:7939. http://doi.wiley.com/10.1002/anie.201502206

doi: 10.1002/anie.201502206
[69]
Xiong H F, Pham H N, Datye A K . J. Catal., 2013,302:93. https://linkinghub.elsevier.com/retrieve/pii/S0021951713000924

doi: 10.1016/j.jcat.2013.03.007
[70]
Lan G J, Tang H D, Zhou Y P, Han W F, Liu H Z, Li X N, Li Y . ChemCatChem, 2014,6, 353. 468cf608-249b-4520-8c0a-ffad238a5361http://dx.doi.org/10.1002/cctc.201300693

doi: 10.1002/cctc.201300693
[71]
Li Y, Lan G J, Wang H Y, Tang H D, Yan X H, Liu H Z . Catal. Commun., 2012,20, 29. https://linkinghub.elsevier.com/retrieve/pii/S1566736711005218

doi: 10.1016/j.catcom.2011.12.037
[72]
Liu X Y, Lan G J, Sun P P, Qian L H, Reina T R, Wang L, Li Y, Liu J . Catal. Today, 2019, DOI: https://doi.org/10.1016/j.cattod.2018.12.039.
[73]
Chen H R, Shen K, Mao Q, Chen J Y, Li Y W . ACS Catal., 2018,8:1417. https://pubs.acs.org/doi/10.1021/acscatal.7b03270

doi: 10.1021/acscatal.7b03270
[1] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[4] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[5] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[10] Xin Lin, Fanfu Guan, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation [J]. Progress in Chemistry, 2020, 32(11): 1680-1696.
[11] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[12] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[13] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[14] Yandong Dou, Shasha Ying, Chenqing Zhang, Liyang Yu, Ken Zheng, Qing Zhu*. Recent Advances in C-H Azidation Catalyzed by Metals [J]. Progress in Chemistry, 2017, 29(2/3): 293-299.
[15] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.