中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1528-1540 DOI: 10.7536/PC160617 Previous Articles   Next Articles

2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion

Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*   

  1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21207004), Beijing Natural Science Foundation (No. 8142025) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120003120027).
PDF ( 2158 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalysis, which not only converts solar energy into storable energy but also directly employs solar energy to decompose environmental pollutants, is one of the effective ways to alleviate the shortage of energy and remediate environment. The Z-scheme photocatalysts can simulate the natural photosynthesis process with high photocatalytic activity under visible light irradiation, becoming a research hotspot in recent years. The development of emerging carbonization nitrogen and graphene-like two-dimensional nanomaterials inspire people to build Z-scheme photocatalytic systems based on two dimensional nanostructure. By this means, the optical spectrum response, carriers separation capacity, redox potentials, and stability to resist light-etch of Z-scheme photocatalysts are reinforced. This paper reviews the recent progress in the study of two dimensional Z-scheme photocatalytic materials, introduces the preparation methods, reaction mechanisms and applications of two dimensional Z-scheme photocatalysts in the field of environment purification and solar energy conversion. Finally, the research prospects of two-dimensional Z-scheme materials in the field of photocatalysis are briefly proposed.

Contents
1 Introduction
2 Study on mechanism of two dimensional Z-scheme photocatalysis
2.1 Reaction mechanism of Z-scheme photocatalysis
2.2 Characteristics and functions of two dimensional Z-scheme photocatalyst
3 Novel two-dimensional visible light catalysts and its control synthesis
3.1 Graphite-phase carbon nitride (g-C3N4)
3.2 Sulfide
3.3 Bismuth based photocatalyst
4 Application of two dimensional Z-scheme visible light responsive photocatalyst in the field of pollutant control
4.1 Photocatalytic degradation of dyes
4.2 Photocatalytic degradation of phenols
4.3 Photocatalytic degradation of antibiotics
5 Application of two dimensional Z-scheme visible light responsive photocatalyst in the energy conversion
5.1 Photocatalytic hydrogen production
5.2 Photocatalytic reduction of CO2
6 Conclusion

CLC Number: 

[1] Simon T, Bouchonville N, Berr M J, Vaneski A, Adrovi D? A, Volbers D, Wyrwich R, Döblinger M, Susha A S, Rogach A L. Nat. Mater., 2014, 13:1013.
[2] Jack R S, Ayoko G A, Adebajo M O, Frost R L. Environ. Sci. Pollut. Res. Int., 2015, 22:7439.
[3] Huang D H, Yin L F, Niu J F. Environ. Sci. Technol., 2016,50:5857.
[4] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21:2285.
[5] 王会香(Wang H X), 姜东(Jiang D), 吴东(Wu D), 李德宝(Li D B), 孙予罕(Sun Y H). 化学进展(Progress in Chemistry), 2012, 24:2116.
[6] Low J X, Cao S W, Yu J G, Wageh S. Chem. Commun., 2014, 50:10768.
[7] Yin L F, Shen Z Y, Niu J F, Chen J, Duan Y P. Environ. Sci. Technol., 2010, 44:9117.
[8] Formal F L, Pendlebury S R, Cornuz M, Tilley S D, Grätzel M, Durrant J R. J. Am. Chem. Soc., 2014, 136:2564.
[9] Koski K J, Cui Y. ACS Nano, 2013, 7:3739.
[10] Selloni A. Nat. Mater., 2008, 7:613.
[11] Jiang J, Zhao K, Xiao X Y, Zhang L Z. J. Am. Chem. Soc., 2012, 134:4473.
[12] 管美丽(Guan M L). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China),2014.
[13] Kim T W, Choi K S. Science, 2014, 343:990.
[14] Sun Y F, Lei F C, Gao S, Pan B C, Zhou J F, Xie Y. Angew. Chem. Int. Ed., 2013, 52:10569.
[15] 柏嵩(Bai S). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China),2015.
[16] Sakai N, Fukuda K, Shibata T, Ebina Y, Kazunori Takada A, Sasaki T. J. Phys. Chem. B, 2006, 110:6198.
[17] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q. Angew. Chem. Int. Ed., 2012, 51:8727.
[18] Sun Y F, Sun Z H, Gao S, Cheng H, Liu Q H, Piao J Y, Yao T, Wu C Z, Hu S L, Wei S Q, Xie Y. Nat. Commun., 2012, 3:1057.
[19] Teweldebrhan D, Goyal V, Balandin A A. Nano Lett., 2010, 10:1209.
[20] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X, Ajayan P M. Adv. Mater., 2013, 25:2452.
[21] Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J, Xie Y. J. Am. Chem. Soc., 2013, 135:10411.
[22] Song J M, Shi Y L, Ren M S, Hu G. Appl. Phys. A, 2014, 116:2139.
[23] 李平(Li P), 李海金(Li H J), 涂文广(Tu W G), 周勇(Zhou Y), 邹志刚(Zou Z G). 物理学报(Acta Physica Sinica), 2015, 64:94209.
[24] Maeda K, Higashi M, Lu D, Abe R, Domen K. J. Am. Chem. Soc., 2010, 132:5858.
[25] Sasaki Y, Nemoto H, Saito K, Kudo A. J. Phys. Chem. C, 2009, 113:17536.
[26] Wen F Y, Li C. Acc. Chem. Res., 2013, 46:2355.
[27] Bard A J, Fox M A. Acc. Chem. Res., 1994, 28:141.
[28] Tachibana Y, Vayssieres L, Durrant J R. Nat. Photonics, 2012, 6:511.
[29] Fleming G R, Schlau-Cohen G S, Amarnath K, Zaks J. Faraday Discuss., 2012, 155:27.
[30] 李晓慧(Li X H), 范同祥(Fan T X). 化学进展(Progress in Chemistry), 2011, 23:1841.
[31] Tim K, Nicolas P, Adrian B, Nowaczyk M M, Guschin D A, Matthias R, Wolfgang S. Angew. Chem., 2013, 52:14233.
[32] Maeda K. Acs Catal., 2013, 3:1486.
[33] Chen S S, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma S S K, Zhang F X, Domen K, Li C. Angew. Chem. Int. Ed., 2015, 54:8618.
[34] Yan J C, Lu H, Gao W G, Song X, Chen M F. Bioresour. Technol., 2015, 175:269.
[35] Sasaki Y, Kato H, Kudo A. J. Am. Chem. Soc., 2013, 135:5441.
[36] Kudo A. MRS Bull., 2010, 36:32.
[37] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. Nat. Mater., 2006, 5:782.
[38] Yun H J, Lee H, Kim N D, Lee D M, Yu S, Yi J. ACS Nano, 2011, 5:4084.
[39] Li H Y, Sun Y J, Cai B, Gan S Y, Han D X, Niu L, Wu T S. Appl. Catal. B-Environ., 2015, 170:206.
[40] Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H X, Fan T X. Int. J. Hydrogen Energy, 2013, 38:8244.
[41] Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Catal. Commun., 2012, 21:91.
[42] Wang X W, Gang L, Wang L Z, Chen Z G, Lu G Q, Cheng H M. Laser Phys. Rev., 2012, 2:42.
[43] Iwase A, Ng Y H, Ishiguro Y, Kudo A, Amal R. J. Am. Chem. Soc., 2011, 133:11054.
[44] Chen D L, Li T, Chen Q Q, Gao J B, Fan B B, Li J, Li X J, Zhang R, Sun J, Gao L. Nanoscale, 2012, 4:5431.
[45] Katsumata H, Tachi Y, Suzuki T, Kaneco S. Rsc Adv., 2014, 4:21405.
[46] Chen S F, Ji L, Tang W M, Fu X L. Dalton Trans., 2013, 42:10759.
[47] Wang X W, Liu G, Chen Z G, Li F, Wang L Z, Lu G Q, Cheng H M. Chem. Commun., 2009, 23:3452.
[48] Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 1500389.
[49] Tu W G, Zhou Y, Feng S C, Xu Q F, Li P, Wang X Y, Xiao M, Zou Z G. Chem. Commun., 2015, 51:13354.
[50] Zhang L J, Li S, Liu B K, Wang D J, Xie T F. ACS Catal., 2014, 4:3724.
[51] Xiong T, Wen M Q, Dong F, Yu J Y, Han L L, Lei B, Zhang Y X, Tang X S, Zang Z G. Appl. Catal. B-Environ., 2016, 199:87.
[52] He Y M, Zhang L H, Fan M H, Wang X X, Walbridge M L, Nong Q Y, Wu Y, Zhao L H. Sol. Energy Mater. Sol. Cells, 2015, 137:175.
[53] Yu J G, Wang S H, Low J X, Xiao W. Phys. Chem. Chem. Phys., 2013, 15:16883.
[54] Zhou P, Yu J G, Jaroniec M. Adv. Mater., 2014, 26:4920.
[55] Sasaki Y, Nemoto H, Saito K, Kudo A. J. Phys. Chem. C, 2009, 113:17536.
[56] Lei C S, Zhu X F, Le Y, Zhu B C, Yu J G, Ho W. Rsc Adv., 2016, 6:10272.
[57] Niu P, Zhang L L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22:4763.
[58] Zhang J, Niu C G, Ke J, Zhou L F, Zeng G M. Catal. Commun., 2015, 59:30.
[59] Qian W, Hisatomi T, Jia Q, Tokudome H, Miao Z, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N. Nat. Mater., 2016,15:611.
[60] Chen B, Li P, Zhang S, Wei Z, Dong X, Xi F, Liu J. J. Colloid Interf. Sci., 2016, 478:263.
[61] Chen W, Liu T Y, Huang T, Liu X H, Zhu J W, Duan G R, Yang X J. Appl. Surf. Sci., 2015, 355:379.
[62] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[63] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, Carlsson J M. J. Mater. Chem., 2008, 41:4893.
[64] Zhang X D, Xie X, Wang H, Zhang J J, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:18.
[65] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, un'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. Nat. Nanotechnol., 2008, 3:563.
[66] Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1:14766.
[67] Lu X, Xu K, Chen P, Jia K, Liu S, Wu C. J. Mater. Chem. A, 2014, 2:18924.
[68] Xin J Y, Dong P, Pu L, Tan H, Li J S. Colloids Surf. A, 2014, 450:25.
[69] Wang B, Zhou K Q, Jiang S H, Shi Y Q, Wang B B, Zhou G, Hu Y. Mater. Res. Bull., 2014, 56:107.
[70] Xi W, Peng W C, Li X Y. Int. J. Hydrogen Energy, 2014, 39:13454.
[71] Xu Y, Zhao W W, Xu R, Shi Y M, Zhang B. Chem. Commun., 2013, 49:9803.
[72] Tian Y, Wang L G, Tang H Q, Zhou W W. J. Mater. Chem. A, 2015, 3:11294.
[73] Chen J S, Xin F, Yin X H, Xiang T Y, Wang Y W. Rsc Adv., 2014, 5:3833.
[74] Sarkar S, Leach A D P, Macdonald J E. Chem. Mater., 2016, 28:4324.
[75] Huang Z F, Pan L, Zou J J, Zhang X, Wang L. Nanoscale, 2014, 6:14044.
[76] Pu Y F, Li Y Z, Huang Y L, Sun I K, Cai P, Seo H J. Mater. Lett., 2015, 141:73.
[77] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6:8473.
[78] Mi Y, Zhou M, Wen L Y, Zhao H P, Lei Y. Dalton Trans., 2014, 43:9549.
[79] Ye L Q, Su Y R, Jin X L, Xie H Q, Zhang C. Environ. Sci. Nano, 2014, 1:90.
[80] Gao M C, Zhang D F, Pu X P, Li H, Li J W, Shao X, Ding K Y. Mater. Lett., 2015, 140:31.
[81] Kim C W, Son Y S, Kang M J, Kim D Y, Kang Y S. Adv. Energ. Mater., 2016, 6:1501754.
[82] Wang Q, Jiang H, Ding S, Noh H M, Moon B K, Choi B C, Shi J, Jeong J H., Synth. React. Inorg., 2015, 46:483.
[83] Li Y, Sun Z H, Zhu S M, Liao Y L, Chen Z X, Zhang D. Carbon, 2015, 94:599.
[84] Yang C Y, Huang Y, Li T H, Li F. Cheminform, 2015, 46:2560.
[85] Yu H G, Sun Q, Jia X R, Wang X F, Yu J G. Dalton Trans., 2015, 44:14532.
[86] Ao Y H, Xu J L, Wang P F, Wang C, Hou J, Qian J, Li Y. Colloids Surf. A, 2015, 487:66.
[87] Ma Y, Jia Y L, Jiao Z B, Yang M, Qi Y X, Bi Y P. Chem. Commun., 2015, 51:6655.
[88] Zhou Y G, Zhang Y F, Lin M S, Long J L, Zhang Z Z, Lin H X, Wu C S, Wang X X. Nat. Commun., 2015, 6:8340.
[89] Yeh T F, Syu J M, Cheng C, Chang T H, Teng H. Adv. Funct. Mater., 2010, 20:2255.
[90] Samal A, Das D P, Nanda K K, Mishra B K, Das J, Dash A. Chem. Asian J., 2016, 11:584.
[91] Oh J, Chang Y H, Kim Y H, Park S. Phys. Chem. Chem. Phys., 2016, 18:10882.
[92] Yuan Y P, Yin L S, Cao S W, Xu G S, Li C H, Xue C. Appl. Catal. B-Environ., 2015, s168/169:572.
[93] Ma P Y, Yu H J, Yu Y, Wang W M, Wang H, Zhang J Y, Fu Z Y. Phys. Chem. Chem. Phys., 2016, 18:3638.
[94] Wang Y, Niu C G, Zhang L, Wang Y, Zhang H, Huang D W, Zhang X G, Wang L, Zeng G M. Rsc Adv., 2016, 6:10221.
[95] Chen B H, Li P R, Zhang S S, Zhang W, Dong X P, Xi F N, Liu J Y. J. Colloid Interface Sci., 2016, 478:263.
[96] Wang W J, Cheng H F, Huang B B, Liu X L, Qin X Y, Zhang X Y, Ying D. J. Colloid. Interf. Sci., 2015, 442:97.
[97] Cheng H J, Hou J G, Takeda O, Guo X M, Zhu H M. J. Mater. Chem. A, 2015, 3:11006.
[98] Dong M, Wu J, Gao M C, Xin Y J, Ma T J, Sun Y Y. Chem. Eng. J., 2016, 290:136.
[99] Jo W K, Sivakumar N T. ACS Appl. Mat. Interf., 2015, 7:17138.
[100] Jo W K, Lee J Y, Natarajan T S. Phys. Chem. Chem. Phys., 2015, 18:1000.
[101] Liu X L, Yan Y, Da Z L, Shi W D, Ma C C, Lv P, Tang Y F, Yao G X, Wu Y T, Huo P W. Chem. Eng. J., 2014, 241:243.
[102] Wang T Y, Quan W, Jiang D L, Chen L L, Li D, Meng S C, Chen M. Chem. Eng. J., 2016, 300:280.
[103] Zhu J L, Liu S M, Yang Q, Xu P P, Ge J H, Guo X T. Colloids Surf. A, 2016, 489:275
[104] Li W B, Chang F, Dai S Y, Yue J G, Hua F X, Hao H. Appl. Catal. B-Environ., 2015, 168/169:465.
[105] Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Nanoscale, 2014, 6:4830.
[106] He Y M, Zhang L H, Teng B T, Fan M H. Environ. Sci. Technol., 2015, 49:649.
[107] Jo W K, Adinaveen T, Vijaya J J, Selvam N C S. Rsc Adv., 2016, 6:10487.
[108] Liu Y N, Wang R X, Yang Z K, Du H, Jiang Y F, Shen C C, Liang K, Xu A W. Chin. J. Catal., 2015, 36:2135.
[109] Wang H H, Peng D L, Chen T, Chang Y, Dong S J. Ceram. Int., 2016, 42:4406.
[110] Chen X, Tan P F, Zhou B H, Dong H G, Pan J, Xiong X. J. Alloys Compd., 2015, 647:456.
[111] Linsebigler A L, Lu G, Yates J T. Chem. Rev., 1995, 95:735.
[112] Wang X W, Yin L C, Liu G. Chem. Commun., 2014, 50:3460.
[113] Cao S W, Low J X, Yu J G, Jaroniec M. Adv. Mater., 2015, 27:2150.
[114] Yan J Q, Wu H, Chen H, Zhang Y X, Zhang F X, Liu S F. Appl. Catal. B-Environ., 2016, 191:130.
[115] Ye R Q, Fang H B, Zheng Y Z, Li N, Wang Y, Tao X. ACS Appl. Mat. Interf., 2016, 8:13879.
[116] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H M. J. Am. Chem. Soc., 2010, 132:11642.
[117] Zhang J S, Sun J H, Maeda K, Domen K, Liu P, Antonietti M, Fu X Z, Wang X C. Energy Environ. Sci., 2011, 4:675.
[118] Huang Y, Liu Y, Zhu D Y, Xin Y N, Zhang B. J. Mater. Chem. A, 2016, 4:13626.
[119] Sato N. J. Plant Res., 2004, 117:495.
[120] Liu H M, Wang T, Zhang H B, Meng X G, Hao D, Chang K, Li P, Kako T, Ye J H. Angew. Chem. Int. Ed., 2015, 54:11545
[121] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I. Energy Environ. Sci., 2011, 4:2937.
[122] Karim M R, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S. J. Am. Chem. Soc., 2013, 135:8097.
[123] Wang H, Qiu X Q, Li L P, Li G S. Chem. Lett., 2007, 36:1132.
[124] Maglia F, Tredici I G. J. Mater. Res., 2012, 27:1975.
[125] Wang Q, Li Y B, Hisatomi T, Nakabayashi M, Shibata N, Kubota J, Domen K. J. Catal., 2015, 328:308.
[126] Ma X M, Jiang Q T, Guo W M, Zheng M, Xu W C, Ma F B, Hou B R. Rsc Adv., 2016, 6:28263.
[127] Lai W C, Lin K W, Guo T F, Chen P, Wang Y T. Appl. Phys. Lett., 2015, 107:114.
[128] Sarswat P K, Bhattacharyya D, Free M L, Misra M. Phys. Chem. Chem. Phys., 2016, 18:3788.
[129] Halmann M. Nature, 1978, 275:115.
[130] Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277:637.
[131] Yuan L, Xu Y J. Appl. Surf. Sci., 2015, 342:154.
[132] Jang Y J, Jeong I, Lee J, Lee J, Ko M J, Lee J S. ACS Nano, 2016, 10:6980.
[133] Jin J, Yu J G, Guo D P, Cui C, Wingkei H. Small, 2015, 11:5262.
[134] Wang J, Yao H C, Fan Z Y, Zhang L, Wang J, Zang S Q, Li Z. ACS Appl. Mat. Interf., 2016, 8:3765.
[135] Kuai L B, Zhou Y, Tu W G, Li P, Li H J, Xu Q F, Tang L Q, Wang X Y, Xiao M, Zou Z G. Rsc Adv., 2015, 5:88409.
[136] Yu W L, Xu D F, Peng T Y. J. Mater. Chem. A, 2015, 3:19936.
[1] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[4] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[5] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[6] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[7] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[8] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[9] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[10] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[11] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[12] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[13] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
[14] Junjian An, Mengling Wang, Mengxuan Huang, Peng Wang, Guangyan Zhang. Environmental Catalytic Performance of BiFeO3 and Its Modifier [J]. Progress in Chemistry, 2018, 30(9): 1298-1307.
[15] Hongmei Liu*, Jianbo Jin, Jun Zhou, Kaixun Huang, Huibi Xu. The Structure and Function of Selenoprotein S and Its Relationship with Diseases [J]. Progress in Chemistry, 2018, 30(10): 1487-1495.