中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1482-1493 DOI: 10.7536/PC200204 Previous Articles   Next Articles

Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization

Xingwang Lan1,**(), Guoyi Bai1   

  1. 1. College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
  • Received: Revised: Online: Published:
  • Contact: Xingwang Lan
  • About author:
    **e-mail:
  • Supported by:
    National Natural Science Foundation of China(21908038); Natural Science Foundation of Hebei Province(B2018201118)
Richhtml ( 71 ) PDF ( 1095 ) Cited
Export

EndNote

Ris

BibTeX

Heterogeneous catalytic conversion of carbon dioxide(CO2) into high value-added fine organic chemicals and chemical fuels has been indicated the important research value and industrial application potential. Due to their high specific surface area, ordered channel structure, excellent chemical and thermal stability, controllable catalytic sites, covalent organic frameworks(COFs) as an emerging class of organic materials, have exhibited outstanding advantages for adsorption and conversion of CO2. Specifically functional molecules or catalytic sites can be easily incorporated into the channel or surface of COFs by using rational strategy, which can efficiently and purposefully achieve the selective regulation for the specific reactions and provide a favorable microenvironment for substrates transport in reaction process. These merits thus can endow promising catalytic performance for heterogeneous catalysis, which greatly give rise to the rapid development and have a good application prospect for the catalytic conversion and utilization of CO2 over COFs catalysts. Therefore, this review briefly focuses on the advances of the conversion of CO2 into important fine chemicals and chemical fuels over COFs in recent years and proposes the key scientific issues involved in this field. Moreover, we also attempt to propose an outlook on the prospective developments for the CO2conversion and utilization by using COFs catalytic materials.

Contents

1 Introduction

2 Cycloaddition of epoxides with CO2

3 N-Formylation of amines with CO2

4 Carboxylation of terminal alkynes with CO2

5 Carboxylative cyclization of propargylic amines or alcohols with CO2

6 Photocatalytic CO, reduction

7 Electrocatalytic CO, reduction

8 Conclusion and outlook

Fig.1 The structure of CTFs[19]
Fig.2 The synthesis of porous carbazole-based CTF-CSUs[20]
Table 1 Cycloaddition of CO2 with various epoxides over CTF-CSU19[20]
Fig.3 The synthesis of POF-PN and POF-PNA-Br-[23]
Fig.4 (a) The synthesis of [HO]X%-Py-COFs and (b) [Et4NBr]X%-Py-COFs; (b)XRD patterns of [HO]X%-Py-COFs and [Et4NBr]X%-Py-COFs[26]
Table 2 The [Et4NBr]50%-Py-COF catalyzed formylation of amines with CO2[26]
Fig.5 The synthesis of COF-HNU3 and COF-HNU4[28]
Fig.6 The synthesis and SEM images of Ag0@CTFN[31]
Fig.7 (a) A plausible model of Ag0@CTFN catalyst on adsorbing and activating CO2. (b) A proposed mechanism for the carboxylation of terminal alkynes with CO2[31]
Fig.8 The synthesis of Ag@TpPa-1[36]
Table 3 Catalytic activity of Ag@TpPa-1 for the reaction of propargylic amines with atmospheric CO2[36]
Fig.9 (a) The synthesis of 3D-HNU-5; (b) Topological structure of 3D-HNU-5; (c) Catalytic activity of Ag@3D-HNU5 catalyst; (d) Substrate scope[37]
Fig.10 Catalytic activities of ACOF-1, N3-COF and g-C3N4 for the conversion of CO2 to methanol[40]
Fig.11 (a) Synthesis of COF and Re-COF; (b) Side view and (c) unit cell of AA stacking COF; (d) Proposed catalytic mechanism for CO2 reduction[41]
Fig.12 Photocatalytic selective reduction of CO2 over Ni-TpBpy[42]
Fig.13 The synthesis of COF-366-M and COF-367-M[48]
Fig.14 The synthesis of (a) 3D COF-300-AR and (b) 2D COF-366-M-AR[49]
Fig.15 The proposed mechanism of electrochemical reduction of CO2 over COF-300-AR[49]
Fig.16 The synthesis of M-TTCOFs[50]
[1]
Song Q W, Zhou Z H, He L N. Green Chem, 2017,19:3707.
[2]
Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun., 2015,6:5933. doi: 10.1038/ncomms6933

pmid: 25600683
[3]
Vessally E, Babazadeh M, Hosseinian A, Arshadi S, Edjlali L. J. CO2 Util., 2017,21:491.
[4]
Bhanja P, Modak A, Bhaumik A. Chem. Eur. J, 2018,24:7278.

pmid: 29396871
[5]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005,310:1166.

pmid: 16293756
[6]
Ding S Y, Wang W. Chem. Soc. Rev, 2013,42:548.

pmid: 23060270
[7]
Lohse M S, Bein T. Adv. Funct. Mater, 2018,28:1705553.
[8]
Zeng Y, Zou R, Zhao Y. Adv. Mater., 2016,28:2855.

pmid: 26924720
[9]
Olajire A A. J. CO2 Util., 2017,17:137.
[10]
Gao Q, Li X, Ning G H, Xu H S, Liu C, Tian B, Tang W, Loh K P. Chem. Mater, 2018,30:1762.
[11]
Lin R B, Chen B. Joule, 2018,2:1030.
[12]
Akbari Z, Ghiaci M. Ind. Eng. Chem. Re., 2017,56:9045.
[13]
Zou B, Hao L, Fan L Y, Gao Z M, Chen S L, Li H, Hu C W. J . Catal., 2015,329:119.
[14]
Fuchs M A, Altesleben C, Zevaco T A, Dinjus E. Eur. J. Inorg. Chem., 2013,2013:4541.
[15]
Dai Z, Sun Q, Liu X, Bian C, Wu Q, Pan S, Wang L, Meng X, Deng F, Xiao F S. J. Catal., 2016,338:202.
[16]
Ding L G, Yao B J, Jiang W L, Li J T, Fu Q J, Li Y A, Liu Z H, Ma J P, Dong Y B. Inorg. Chem., 2017,56:2337.
[17]
Samikannu A, Konwar L J, Mäki-Arvela P, Mikkola J P. Appl. Catal. B: Environ., 2019,241:41.
[18]
Zhu Q Q, Zhang W W, Zhang H W, Yuan Y, Yuan R, Sun F, He H. Inorg. Chem., 2019,58:15637. doi: 10.1021/acs.inorgchem.9b02717

pmid: 31702143
[19]
Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012,5:1793.

pmid: 22899343
[20]
Yu W, Gu S, Fu Y, Xiong S, Pan C, Liu Y, Yu G. J. Catal., 2018,362:1.
[21]
Zhang S, Chen Y, Li F, Lu X, Dai W, Mori R. Catal. Today, 2006,115:61.
[22]
Hu J, Ma J, Lu L, Qian Q, Zhang Z, Xie C, Han B. ChemSusChem, 2017,10:1292.

pmid: 28070981
[23]
Ma D, Liu K, Li J, Shi Z. ACS Sustainable Chem. Eng., 2018,6:15050.
[24]
Buyukcakir O, Je S H, Talapaneni S N, Kim D, Coskun A. ACS Appl. Mater. Interfaces, 2017,9:7209.

pmid: 28177215
[25]
Huang Z, Jiang X, Zhou S, Yang P, Du C X, Li Y. ChemSusChem, 2019,12:3054.

pmid: 30830999
[26]
Dong B, Wang L, Zhao S, Ge R, Song X, Wang Y, Gao Y. Chem. Commun., 2016,52:7082
[27]
Mu Z J, Ding X, Chen Z Y, Han B H. ACS Appl. Mater. Interfaces, 2018,10:41350.
[28]
Qiu J, Zhao Y, Li Z, Wang H, Shi Y, Wang J. ChemSusChem, 2019,12:2421.

pmid: 30895744
[29]
张帅(Zhang S), 李雪冬(LiX), 何良年(HeL N). 化学学报 (Acta Chim. Sinica), 2016,74:17.
[30]
Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem, 2019,12:6. doi: 10.1002/cssc.201802012

pmid: 30381905
[31]
Lan X, Du C, Cao L, She T, Li Y, Bai G. ACS Appl. Mater. Interfaces, 2018,10:38953.

pmid: 30338979
[32]
Lan X, Li Y, Du C, She T, Li Q, Bai G. Chem. Eur. J, 2019,25:8560. doi: 10.1002/chem.201900563

pmid: 30950100
[33]
Dang Q Q, Liu C Y, Wang X M, Zhan X M, ACS Appl. Mater. Interfaces, 2018,10:27972.

pmid: 30040377
[34]
Zhao Y, Qiu J, Tian L, Li Z, Fan M, Wang J. ACS Sustainable Chem. Eng., 2016,4:5553.
[35]
Hu Y, Song J, Xie C, Wu H, Jiang T, Yang G, Han B. ACS Sustainable Chem. Eng., 2019,7:5614.
[36]
Ghosh S, Molla R A, Kayal U, Bhaumik A, Islam S M. Dalton Trans, 2019,48:4657.
[37]
Guan P, Qiu J, Zhao Y, Wang H, Li Z, Shi Y, Wang J. Chem. Commun., 2019,55:12459.
[38]
Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W. J. Am. Chem. Soc, 2017, 139, 47:17082.
[39]
Li X, Yu J, Jaroniec M, Chen X. Chem. Rev., 2019,119:3962.

pmid: 30763077
[40]
Fu Y, Zhu X, Huang L, Zhang X, Zhang F, Zhu W. Appl. Catal. B: Environ., 2018,239:46.
[41]
Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J, Huang J. J. Am. Chem. Soc., 2018,140:14614.
[42]
Zhong W, Sa R, Li L, He Y, Li L, Bi J, Zhuang Z, Yu Y, Zou Z. J. Am. Chem. Soc., 2019,141:7615.

pmid: 30998334
[43]
Xu F, Meng K, Zhu B, Liu H, Xu J, Yu J. Adv.Funct. Mater., 2019,29:1904256.
[44]
Huo Y, Zhang J, Dai K, Li Q, Lv J, Zhu G, Liang C. Appl. Catal. B: Environ., 2019,241:528.
[45]
Guo F, Yang S, Liu Y, Wang P, Huang J, Sun W Y. ACS Catalysis, 2019,9:8464. doi: 10.1021/acscatal.9b02126
[46]
Pan A, Ma X, Huang S, Wu Y, Jia M, Shi Y, Liu Y, Wangyang P, He L, Liu Y. J. Phys. Chem. Lett., 2019,10:6590.

pmid: 31596093
[47]
Long C, Li X, Guo J, Shi Y, Liu S, Tang Z. Small Methods, 2019,3:1800369.
[48]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y, Paris A R, Kim D, Yang P, Yaghi O M, Chang C J. Science, 2015,349:1208.

pmid: 26292706
[49]
Liu H, Chu J, Yin Z, Cai X, Zhuang L, Deng H. Chem, 2018,4:1696.
[50]
Zhu H J, Lu M, Wang Y R, Yao S J, Zhang M, Kan Y H, Liu J, Chen Y, Li S L, Lan Y Q, Nat. Commun, 2020,11:497.

pmid: 31980641
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[8] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[9] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[10] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[11] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[12] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[13] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[14] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[15] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.