中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 318-329 DOI: 10.7536/PC220706 Previous Articles   Next Articles

• Review •

Hybrid Energy Harvesting Solar Cells―From Principles to Applications

Qiyao Guo1, Jialong Duan1, Yuanyuan Zhao2, Qingwei Zhou1, Qunwei Tang1()   

  1. 1 Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology,Qingdao 266590, China
    2 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology,Qingdao 266590, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: tangqunwei@sdust.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFE0111000); National Natural Science Foundation of China(U1802257); National Natural Science Foundation of China(22179051); National Natural Science Foundation of China(61774139); Natural Science Foundation of Guangdong Province(2019B151502061)
Richhtml ( 43 ) PDF ( 473 ) Cited
Export

EndNote

Ris

BibTeX

Photovoltaics are one of the strategic solutions to solve energy and environmental problems. The state-of-the-art solar cells always photo-induce electrons and generate electricity by the photovoltaic effect under the illumination of sunlight or indoor light, but the power output is still extremely low in dark-light or nonluminous conditions such as rainfall and night. The hybrid energy harvesting solar cells that can persistently output electricity in multiple weather are expected to further increase total power output and generating time. This perspective focuses on discussing the coupling principles of photovoltaic effect with hydrovoltaic effect, triboelectric effect, light storing-emitting effect, piezoelectric effect and thermoelectric effect in hybrid energy harvesting solar cells and summarizing the recent advances of these novel solar cells as well as analyzing the future development of this field.

Contents

1 Introduction

2 Hybrid energy harvesting solar cells for harvesting raindrop energy

2.1 Hydrovoltaic effect

2.2 Triboelectric effect

3 Hybrid energy harvesting solar cells based on solar energy storing-emitting effect

4 Hybrid energy harvesting solar cells based on piezoelectric and thermoelectric effects

5 Conclusions and outlook

Fig.1 (a) The device structure, principle and electric outputs of moving a 0.6 mol/L NaCl aqueous droplet on monolayer graphene to create hydrovoltaic potentials[20]. (b) The structure and current and voltage outputs of hybrid energy harvesting solar cell by coupling hydrovoltaic and photovoltaic effects[39]. (c) The CV curves for symmetric dummy cells from graphene film /raindrop[40]. (d) Voltage data created by dropping simulated raindrops on G-CB/PTFE electrode[41]. (e) The polarizing microscopic image of sericite in its composite[41]
Fig.2 (a) The set-up for measuring evaporation-induced voltage as well as the voltage outputs of single- and multi-junction cells[46]. (b) J-V curves for the carbon-based all-inorganic CsPbBr3 perovskite solar cell as well as current and voltage outputs induced by water-vapor[47]
Fig.3 (a) The structure of liquid-solid TENG/Si solar cell device and the performances under standard sunlight irradiation or simulated raining conditions[48]. (b) The device structure of coupling liquid-solid and solid-solid TENG/Si solar cell tandem[49]. (c) J-V curves based on nano-wrinkled PDMS TENG/Si solar cell[50]
Fig.4 (a) The hybrid energy harvesting solar cell device based on three-electrode-typed liquid-solid TENG/Si tandem[52]. (b) The enhanced build-in electric field assisted by electrostatic field[52]. (c) The photovoltaic performances[52]. (d) Schematic illustration of BIPV[53]. (e) Isc of TENG under three different simulated precipitation densities; Diagram of the charging circuit and voltage curves of a commercial capacitor charging process by hybrid system[53]
Fig.5 (a) The J-V curves of a traditional DSSC recorded under one standard sun and in the dark[54]. (b) The device structure of hybrid energy harvesting solar cell based on LPPs[54]. (c) Schematic diagrams of photoluminescence for N719-TiO2/LPP photoanodes and their hybrid energy harvesting solar cells at nights[54]. (d) The PL emission of N719-TiO2/LPP photoanodes[54]. (e) The J-V curves of hybrid energy harvesting solar cells recorded in the dark[54]. (f) The device structure and (g) working principle of a bifacial DSSC based on light storing-emitting effect[55]. (h) The excitation and emission spectra of the TiO2/LPP anode as well as J-V curves of their DSSCs[55]
Fig.6 (a) Structure of SAED-based PSCs[56]. (b) The IPCE spectra of PSCs with and without SAED. The inset shows the excitation and emission spectra of the SAED film[56]. (c) Afterglow characteristics of SAED film, the insets show the phosphorescence mechanism[56]. (d) A schematic diagram of the afterglow mechanism of YOS[57]. (e) Band alignment and (f) J-V curves for hysteresis effect at forward and reverse scan of YOS-based mesoporous PSCs[57]
Fig.7 (a) The device structure of a silicon heterojunction solar cell based on piezo-phototronic effect[60]. (b) The energy band diagrams for the p-n junction contacts with and without positive press[60]. (c) The J-V curves of the solar cell recorded under different presses[60]. (d) Schematics and energy-band diagrams demonstrating the piezo-phototronic effect on device[61]. (e) J-V curves of devices with continuous static tensile strains[61]. (f) Dependences of PCE and Jsc under continuous static tensile strains[61]
Fig.8 (a) AM 1.5G solar spectrum[63]. (b) The perovskite solar cell structure based on NaCo2O4/TiO2 nanowires and electron transport route across photoanode[62]. (c) The J-V curves of the perovskite solar cell recorded at various temperature differences[62]. (d) The perovskite/thermoelectric hybrid device structure and (e) corresponding equivalent electric circuit diagram[63]. (f) J-V curves of the hybrid devices containing different numbers of thermoelectric modules under AM 1.5G sunlight[63]
[57]
Zhuang X, Wu Y, Liu S, Bi W, Chen X, Liu L, Chen C, Liu D, Dai Q, Song H W. J. Power Sources, 2020, 477: 228757.

doi: 10.1016/j.jpowsour.2020.228757
[58]
Yang Q, Guo X, Wang W, Zhang Y, Xu S, Lien D H, Wang Z L. ACS Nano, 2010, 4: 6285.

doi: 10.1021/nn1022878
[59]
Dai B Y, Biesold G M, Zhang M, Zou H Y, Ding Y, Wang Z L, Lin Z Q. Chem. Soc. Rev., 2021, 50: 13646.

doi: 10.1039/D1CS00506E
[60]
Zhu L P, Wang L F, Pan C F, Chen L F, Xue F, Chen B D, Yang L J, Su L, Wang Z L. ACS Nano, 2017, 11: 1894.

doi: 10.1021/acsnano.6b07960
[61]
Sun J, Hua Q, Zhou R, Li D, Guo W, Li X, Hu G, Shan C, Meng Q B, Dong L, Pan C F, Wang Z L. ACS Nano, 2019, 13: 4507.

doi: 10.1021/acsnano.9b00125
[62]
Liu T, Wang C, Hou J, Zhang C B, Chen H, He H, Wang N, Wu H, Cao G Z. Small, 2016, 12: 5146.

doi: 10.1002/smll.v12.37
[63]
Xu L, Xiong Y, Mei A Y, Hu Y, Rong Y G, Zhou Y H, Hu B, Han H W. Adv. Energy Mater., 2018, 8: 1702937.

doi: 10.1002/aenm.v8.13
[64]
Zhou Y Y, Chen Y N, Zhang Q, Zhou Y Tai M Q, Koumoto K, Lin H. J. Energy Chem., 2021, 59: 730.

doi: 10.1016/j.jechem.2020.12.020
[65]
Guo Q, Zhao Y, Tang Q, Duan J. Sol. RRL, 2022, 2200570.
[1]
Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H. Nature, 2022, 603: 73.

doi: 10.1038/s41586-021-04372-8
[2]
Li Z, Li B, Wu X, Sheppard S A, Zhang S, Gao D, Long N J, Zhu Z. Science, 2022, 376: 416.

doi: 10.1126/science.abm8566
[3]
Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J. Science, 2021, 373: 902.

doi: 10.1126/science.abi6323
[4]
Meng L, Li Y F. Prog. Chem., 2022, 34: 1247.

doi: 10.7536/PC220621
(孟磊, 利用舫 化学进展, 2022, 34: 1247.).

doi: 10.7536/PC220621
[5]
Peng H, Cai M, Ma S, Shi X, Liu X, Dai S. Prog. Chem., 2021, 33: 136.
(彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 化学进展, 2021, 33: 136.).
[6]
Yang Y, Ma S, Luo Y, Lin F, Zhu L, Guo X. Prog. Chem., 2021, 33: 779.
(杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 化学进展, 2021, 33: 779).
[7]
Zhang Q Y, Duan J L, Guo Q Y, Zhang J S, Zheng D D, Yi F X, Yang X Y, Duan Y Y, Tang Q W. Angew. Chem. Int. Ed., 2022, 61: e202116632.
[8]
Guo Q, Duan J, Zhang J, Zhang Q, Duan Y, Yang X, He B, Zhao Y, Tang Q. Adv. Mater., 2022, 34: 2202301.

doi: 10.1002/adma.v34.26
[9]
Duan J L, Wang Y D, Yang X Y, Tang Q W. Angew. Chem. Int. Ed., 2020, 59: 4391.

doi: 10.1002/anie.v59.11
[10]
Ballif C, Haug F J, Boccard M, Verlinden P J, Hahn G. Nat. Rev. Mater., 2022, 7: 597.

doi: 10.1038/s41578-022-00423-2
[11]
Köhler M, Pomaska M, Procel P, Santbergen R, Zamchiy A, Macco B, Lambertz A, Duan W, Cao P, Klingebiel B, Li S, Eberst A, Luysberg M, Qiu K, Isabella O, Finger F, Kirchartz T, Rau U, Ding K. Nat. Energy, 2022, 6: 529.

doi: 10.1038/s41560-021-00806-9
[12]
Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D L, Kanematsu M, Uzu H, Yamamoto K. Nat. Energy, 2017, 2: 17032.

doi: 10.1038/nenergy.2017.32
[13]
Eperon G E, Hörantner M T, Snaith H J. Nat. Rev. Chem., 2018, 1: 95.

doi: 10.1038/s41570-017-0095
[14]
Paul K K, Kim J-H, Lee Y H. Nat. Rev. Phys., 2021, 3: 178.

doi: 10.1038/s42254-020-00272-4
[15]
Wang L, Wang Z, Wang H Y, Grinblat G, Huang Y L, Wang D, Ye X H, Li X B, Bao Q L, Wee A S, Maier S A, Chen Q D, Zhong M L, Qiu C W, Sun H.-B. Nat. Commun., 2017, 8: 13906.

doi: 10.1038/ncomms13906 pmid: 28054546
[16]
Tan J, Fang S, Zhang Z, Yin J, Li L, Wang X, Guo W. Nat. Commun., 2022, 13: 3643.

doi: 10.1038/s41467-022-31221-7
[17]
Sun S, Tian Q, Mi H-Y, Li J, Jing X, Guo Z, Liu C, Shen C. Sci. China Mater., 2022, 65: 2479.

doi: 10.1007/s40843-021-2010-1
[18]
Zhao F, Guo Y, Zhou X, Shi W, Yu G. Nat. Rev. Mater., 2020, 5: 388.

doi: 10.1038/s41578-020-0182-4
[19]
Ding T P, Liu K, Li J, Xue G B, Chen Q, Huang L, Hu B, Zhou J. Adv. Funct. Mater., 2017, 27: 1700551.

doi: 10.1002/adfm.201700551
[20]
Yin J, Li X M, Zhang Z H, Zhou J X, Guo W L. Nat. Nanotechnol., 2014, 9: 378.

doi: 10.1038/nnano.2014.56
[21]
Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L. Nat. Commun., 2019, 10: 1427.

doi: 10.1038/s41467-019-09461-x
[22]
Wang Z L. Adv. Energy Mater., 2020, 10: 2000137.

doi: 10.1002/aenm.v10.17
[23]
Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang Z L. Nat. Commun., 2021, 12: 4686.

doi: 10.1038/s41467-021-25046-z
[24]
Wang Z L, Wu W Z. Angew. Chem. Int. Ed., 2012, 51: 11700.

doi: 10.1002/anie.201201656
[25]
Wang X, Chen Y, Liu F, Pan Z. Nat. Commun., 2020, 11: 2040.

doi: 10.1038/s41467-020-16015-z
[26]
Zhou Z, Wang X, Yi X, Ming H, Ma Z, Peng M. Chem. Eng. J., 2021, 421: 127820.

doi: 10.1016/j.cej.2020.127820
[27]
Liu J, Liang Y, Yan S, Chen D, Miao S, Wang W, Bi J. J. Mater. Chem. C, 2021, 9: 9692.

doi: 10.1039/D1TC01922H
[28]
Pan Z W, Lu Y Y, Liu F. Nat. Mater., 2012, 11: 58.

doi: 10.1038/nmat3173
[29]
Dai B, Biesold G M, Zhang M, Zou H, Ding Y, Wang Z L, Lin Z. Chem. Soc. Rev., 2021, 50: 13646.

doi: 10.1039/D1CS00506E
[30]
Wang J, Xiao F, Zhao H. Renew. Sust. Energ. Rev., 2021, 151: 111522.

doi: 10.1016/j.rser.2021.111522
[31]
Yang Z, Zhou S, Zu J, Inman D. Joule, 2018, 2: 642.

doi: 10.1016/j.joule.2018.03.011
[32]
Wang Z L, Song J H. Science, 2006, 312: 242.

doi: 10.1126/science.1124005
[33]
Su L, Wang D, Wang S, Qin B, Wang Y, Qin Y, Jin Y, Chang C, Zhao L D. Science, 2022, 375: 1385.

doi: 10.1126/science.abn8997
[34]
Qin B, Wang D, Liu X, Qin Y, Dong J F, Luo J, Li J W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D. Science, 2021, 373: 556.

doi: 10.1126/science.abi8668
[35]
Xiao Y, Zhao L D. Science, 2020, 367: 1196.

doi: 10.1126/science.aaz9426 pmid: 32165572
[36]
Hasan M A M, Zhang T, Wu H, Yang Y. Adv. Energy Mater., 2022, 2201383.
[37]
Zhao L L, Liu L Q, Yang X Y, Hong H X, Yang Q M, Wang J W, Tang Q W. J. Mater. Chem. A, 2020, 8: 7880.

doi: 10.1039/D0TA01698E
[38]
Tang Q W, Yang P Z. J. Mater. Chem. A, 2016, 4: 9730.

doi: 10.1039/C6TA03107B
[39]
Tang Q W, Wang X P, Yang P Z, He B L. Angew. Chem. Int. Ed., 2016, 55: 5243.

doi: 10.1002/anie.201602114
[40]
Zhang Y, Tang Q W, He B L,; Yang P Z. J. Mater. Chem. A, 2016, 4: 13235.

doi: 10.1039/C6TA05276B
[41]
Tang Q W, Zhang H N, He B L, Yang P Z. Nano Energy, 2016, 30: 818.

doi: 10.1016/j.nanoen.2016.09.014
[42]
Tang Q W, Duan Y Y, He B L, Chen H Y. Angew. Chem. Int. Ed., 2016, 55: 14412.

doi: 10.1002/anie.v55.46
[43]
Wang Y L, Duan J L, Zhao Y Y, Duan Y Y, Tang Q W. Nano Energy, 2017, 41: 293.

doi: 10.1016/j.nanoen.2017.09.007
[44]
He P, Chen W L, Li J P, Zhang H, Li Y W, Wang E B. Sci. Bull., 2020, 65: 35.

doi: 10.1016/j.scib.2019.09.026
[45]
Wang T, Ji T, Chen W L, Li X H, Guan W, Geng Y, Wang X L, Li Y G, Kang Z H. Nano Energy, 2020, 68: 104349.

doi: 10.1016/j.nanoen.2019.104349
[46]
Xue G, Xu Y, Ding T, Li J, Yin J, Fei W, Cao Y, Yu J, Yuan L, Gong L, Chen J, Deng S, Zhou J, Guo W. Nat. Nanotechnol., 2017, 12: 317.

doi: 10.1038/nnano.2016.300
[47]
Duan J L, Hu T Y, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Int. Ed., 2018, 57: 5746.

doi: 10.1002/anie.201801837
[48]
Zheng L, Lin Z H, Cheng G, Wu W Z, Wen X N, Lee S M, Wang Z L. Nano Energy, 2014, 9: 291.

doi: 10.1016/j.nanoen.2014.07.024
[49]
Zheng L, Cheng G, Chen J, Lin L, Wang J, Liu Y S, Li H X, Wang Z L. Adv. Energy Mater., 2015, 5: 1501152.

doi: 10.1002/aenm.201501152
[50]
Liu X L, Cheng K, Cui P, Qi H, Qin H F, Gu G Q, Shang W Y, Wang S J, Cheng G, Du Z L. Nano Energy, 2019, 66: 104188.

doi: 10.1016/j.nanoen.2019.104188
[51]
Liu Y Q, Sun N, Liu J W, Wen Z, Sun X H, Lee S T, Sun B Q. ACS Nano, 2018, 12: 2893.

doi: 10.1021/acsnano.8b00416
[52]
Zhao L L, Duan J L, Liu L Q, Wang J W, Duan Y Y, Vaillant-Roca L, Yang X Y, Tang Q W. Nano Energy, 2021, 82: 105773.

doi: 10.1016/j.nanoen.2021.105773
[53]
Zheng Y, Liu T, Wu J, Xu T, Wang X, Han X, Cui H, Xu X F, Pan C F, Li X Y. Adv. Mater., 2022, 34: 2202238.

doi: 10.1002/adma.v34.28
[54]
Tang Q W, Wang J, He B L, Yang P Z. Nano Energy, 2017, 33: 266.

doi: 10.1016/j.nanoen.2017.01.047
[55]
Duan J L, Duan Y Y, Zhao Y Y, He B L, Tang Q W. Chem. Commun., 2017, 53: 10046.

doi: 10.1039/C7CC04645F
[56]
Chen C, Li H, Jin J, Chen X, Cheng Y, Zheng Y, Liu D, Xu L, Song H W, Dai Q L. Adv. Energy Mater., 2017, 7: 1700758.

doi: 10.1002/aenm.201700758
[1] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[2] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[3] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[4] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[5] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[6] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[7] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[8] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[9] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[10] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[11] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[12] Jianxi Kang, Shirong Wang, Mengna Sun, Hongli Liu, Xianggao Li. Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2017, 29(4): 400-411.
[13] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[14] Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing. Solid Oxide Electrolyzer Cells [J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[15] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.