中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (8): 1170-1185 DOI: 10.7536/PC160336 Previous Articles   Next Articles

• Review and comments •

Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3

Li Yanping1,2, Yu Huangzhong1*, Dong Yifan2, Huang Xinxin2   

  1. 1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China;
    2. School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61176061, 61474046, 11247253
PDF ( 572 ) Cited
Export

EndNote

Ris

BibTeX

For the whole solution-processed efficient and stable organic photovoltaic devices at low temperature, reasonably selecting the method of interface modification material preparation is very crucial. It has become one of the most focuses in research community of organic photovoltaics in recent years. By choosing suitable interfacial materials, the energetic barrier height at the interface could be reduced to form an ohmic contact with less series resistance, inducing high charge collection efficiency of the corresponding electrodes for holes or electrons. Solution-prepared molybdenum oxide (MoO3) as anode buffer layer can effectively improve the efficiency of interface collection and carrier transmission, improving the energy conversion efficiency and stability of organic solar cells. This article reviews the research progress of anode buffer layer MoO3 of organic solar cells in recent years, introduces the some preparation methods and principles of MoO3 as anode interface layers, elaborated the current situation and existing problems of MoO3 film based on the prepared solution of interfacial modification, which provides valuable references for the fabrication of the efficient and stable organic solar cells. We believe that solution-processed MoO3 will play a key role as buffer layers in the future fabrication of large area and flexible organic photovoltaic devices with high performance and long term stability.

Contents
1 Introduction
2 The effect of solution-prepared of MoO3 anode interface modification
3 The energy level structure and change of MoO3
4 The application of solution-prepared MoO3 in organic solar cell
4.1 MoO3 based on the preparation of ammonium molybdate
4.2 MoO3 based on organic molybdenum sources
4.3 MoO3 prepared by chemical synthesis
4.4 MoO3 prepared by nanoparticle dispersion method
4.5 MoO3 prepared by other solutions
5 Conclusion

CLC Number: 

[1] Jeon N J,Noh J H,Yang W S,Kim Y C,Ryu S,Seo J,Seok S I.Nature,2015,517:476.
[2] Major J D,Treharne R E,Phillips L J,Durose K.Nature,2014,511:334.
[3] Lizin S,Van P S,Schepper D E,Vranken L.Sol.Energy Mater.Sol.Cells,2012,103:1.
[4] Liu X D,Yu H,Yan L,Dong Q Q,Wan Q,Zhou Y,Song B,Li Y F.ACS Appl.Mater.Interf.,2015,7:6230.
[5] Lin Y Z,Wang J Y,Zhang Z G,Bai H T,Li Y F,Zhu D B,Zhan X W.Adv.Mater.,2015,27:1170.
[6] Heeger A J.Adv.Mater.,2014,26:10.
[7] Yu H Z,Ge Y C,Shi S W.Electrochim.Acta,2015,180:645.
[8] He Z C,Liu F,Wang C,Chen J H,He L L,Nordlund D,Wu H B,Russell T P,Cao Y.Mater.Horizons,2015,2:592.
[9] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[10] Lee S,Lee E S,Kim T Y,Cho J S,Eo Y J,Yun J H,Cho A.Sol.Energy Mater.Sol.Cells,2015,141:299.
[11] Bailie C D,Christoforo M G,Mailoa J P,Bowring A R,Unger E L,Nguyen W H,Burschka J,Pellet N,Lee J Z,Gratzel M.Energ.Environ.Sci.,2015,8:956.
[12] Constantinou I,Lai T H,Zhao D,Klump E D,Deininger J J,Lo C K,Reynolds J R.ACS Appl.Mater.Interf.,2015,7:4826.
[13] Andersen T R,Dam H F,Hosel M,Helgesen M,Carle J E,Larsen-Olsen T T,Gevorgyan S A,Andreasen J W,Adams J,Li N.Energ.Environ.Sci.,2014,7:2925.
[14] Yu H Z,Peng J B.Org.Electron.,2008,9:1022.
[15] He M,Wang M,Lin C,Lin Z.Nanoscale,2014,6:3984.
[16] Chen C P,Chen Y D,Chuang S C.Adv.Mater.,2011,23:3859.
[17] Li G,Zhu R,Yang Y.Nat.Photonics,2012,6:153.
[18] Krebs F C,Tromholt T,Jorgensen M.Nanoscale,2010,2:873.
[19] Antoniadis H,Hsieh B R,Abkowitz M A,Jenekhe S A,Stolka M.Synth.Met.,1994,62:265.
[20] Tang C W.App.Phys.Lett.,1986,48:183.
[21] Yu G,Gao J,Hummelen J C,Wudl F,Heeger A J.Sci.,1995,270:1789.
[22] Chen J D,Cui C H,Li Y Q,Zhou L,Ou Q D,Li C,Li Y F,Tang J X.Adv.Mater.,2015,27:1035.
[23] You J,Dou L,Yoshimura K,Kato T,Ohya K,Moriarty T,Emery K,Chen C C,Gao J,Li G,Yang Y.Nat.Commun.,2013,4:1446.
[24] Liu C,Yi C,Wang K,Yang Y L,Bhatta R S,Tsige M,Xiao S Y,Gong X.ACS Appl.Mater.Interf.,2015,7:4928.
[25] Gao K,Li L S,Lai T Q,Xiao L G,Huang Y,Huang F,Peng J B,Cao Y,Liu F,Russell T P,Janssen R A J,Peng X B.J.Am.Chem.Soc.,2015,137:7282.
[26] Lin Y Z,Wang J Y,Dai S X,Li Y F,Zhu D B,Zhan X W.Adv.Energy Mater.,2014,4:1400420.
[27] Brabec C J,Cravino A,Meissner D,Sariciftci N S,Fromherz T,Rispens M T,Sanchez L,Hummelen J C.Adv.Funct.Mater.,2001,11:374.
[28] Zhao X Y,Wang X Z,Lim S L,Qi D C,Wang R,Gao Z Q,Mi B X,Chen Z K,Huang W,Deng W.Sol.Energy Mater.Sol.Cells,2014,121:119.
[29] Cowan S R,Roy A,Heeger A J.Phys.Rev.B,2010,82:245202.
[30] Yang B B,Zhang D D,Lee S T,Li Y Q,Tang J X.App.Phys.Lett.,2013,102:073301.
[31] Dongaonkar S,Servaites J D,Ford G M,Loser S,Moore J,Gelfand R M,Mohseni H,Hillhouse H W,Agrawal R,Ratner M A,Marks T J,Lundstrom M S,Alam M A.J.App.Phys.,2010,108:124509.
[32] Huber R C,Ferreira A S,Thompson R,Kilbride D,Knutson N S,Devi L S,Toso D B,Challa J R,Zhou Z H,Rubin Y.Sci.,2015,348:1340.
[33] Graetzel M,Janssen R A J,Mitzi D B,Sargent E H.Nature,2012,488:304.
[34] Jackson N E,Savoie B M,Kohlstedt K L,Marks T J,Chen L X,Ratner M A.Macromolecules,2014,47:987.
[35] Lin H,Chen S S,Li Z K,Lai J Y L,Yang G F,Mcafee T,Jiang K,Li Y K,Liu Y H,Hu H W,Zhao J B,Ma W,Ade H,Yan H.Adv.Mater.,2015,27:7299.
[36] He Z C,Zhong C M,Su S J,Xu M,Wu H B,Cao Y.Nat.Photonics,2012,6:593.
[37] Chueh C C,Li C Z,Jen A K Y.Energy Environ.Sci.,2015,8:1160.
[38] Gautam B R,Lee C,Younts R,Lee W,Danilov E,Kim B J,Gundogdu K.ACS Appl.Mater.Interf.,2015,7:27586
[39] Huo L J,Liu T,Fan B B,Zhao Z Y,Sun X B,Wei D H,Yu M M,Liu Y Q,Sun Y M.Adv.Mater.,2015,27:6969.
[40] Zhao Z Q,Chen X,Liu Q,Wu Q L,Zhu J,Dai S Y,Yang S F.Org.Electron.,2015,27:232.
[41] Wang F Z,Tan Z A,Li Y F.Energy Environ.Sci.,2015,8:1059.
[42] Po R,Carbonera C,Bernardi A,Camaioni N.Energy Environ.Sci.,2011,4:285.
[43] Zou J Y,Li C Z,Chang C Y,Yip H L,Jen A K Y.Adv.Mater.,2014,26:3618.
[44] Wu F,Ye F,Chen Z B,Cui Y,Yang D L,Li Z D,Zhao X L,Yang X N.Org.Electron.,2015,26:48.
[45] Duan C,Zhang K,Zhong C,Huang F,Cao Y.Chem.Soc.Rev.,2013,42:9071.
[46] Lai Y Y,Cheng Y J,Hsu C S.Energy Environ.Sci.,2014,7:1866.
[47] Qian M,Zhang R,Hao J Y,Zhang W J,Zhang Q,Wang J P,Tao Y T,Chen S F,Fang J F,Huang W.Adv.Mater.,2015,27:3546.
[48] Zuo L J,Zhang S H,Li H Y,Chen H Z.Adv.Mater.,2015,27:6983
[49] Zhang Q,Zhang D W,Li X D,Liu X H,Zhang W J,Han L,Fang J F.Chem.Commun.,2015,51:10182.
[50] Zhao G,Wang W,Bae T S,Lee S G,Mun C,Lee S,Yu H S,Lee G H,Song M,Yun J.Nat.Commun.,2015,6:8830.
[51] Wei H Y,Xiao J Y,Yang Y Y,Lv S T,Shi J J,Xu X,Dong J,Luo Y H,Li D M,Meng Q B.Carbon,2015,93:861.
[52] Heriot S Y,Jones R A L.Nat.Mater.,2005,4:782.
[53] Min J,Luponosov Y N,Gasparini N,Richter M,Bakirov A V,Shcherbina M A,Chvalun S N,Grodd L,Grigorian S,Ameri T.Adv.Energy Mater.,2015,5:1500386.
[54] Ta Y L,Yang Z G.Langmuir,2015,31:13264.
[55] Kim H M,Kim J,Lee J,Jang J.ACS Appl.Mater.Interf.,2015,7:24592.
[56] Sun K,Li P C,Xia Y J,Chang J J,Ouyang J Y.ACS Appl.Mater.Interf.,2015,7:15314.
[57] Kim N,Kee S,Lee S H,Lee B H,Kahng Y H,Jo Y R,Kim B J,Lee K.Adv.Mater.,2014,26:2268.
[58] Lee J J,Lee S H,Kim F S,Choi H H,Kim J H.Org.Electron.,2015,26:191.
[59] Sun Y M,Seo J H,Takacs C J,Seifter J,Heeger A J.Adv.Mater.,2011,23:1679.
[60] Park J H,Seo J,Park S,Shin S S,Kim Y C,Jeon N J,Shin H W,Ahn T K,Noh J H,Yoon S C,Hwang C S,Seok S I.Adv.Mater.,2015,27:4013.
[61] Zhao D W,Tan S T,Ke L,Liu P,Kyaw A K K,Sun X W,Lo G Q,Kwong D L.Sol.Energy Mater.Sol.Cells,2010,94:985.
[62] Shen K,Yang R L,Wang D Z,Jeng M J,Chaudhary S,Ho K M,Wang D L.Sol.Energy Mater.Sol.Cells,2016,144:500.
[63] Tan Z A,Zhang W Q,Cui C H,Ding Y Q,Qian D P,Xu Q,Li L J,Li S S,Li Y F.Phys.Chem.Chem.Phys.,2012,14:14589.
[64] Li W Z,Jin G H,Hu H S,Li J,Yang Y H,Chen Q Y.Electrochim.Acta,2015,153:499.
[65] Tan Z A,Li L G,Cui C H,Ding Y Q,Xu Q,Li S S,Qian D P,Li Y F.J.Phys.Chem.C,2012,116:18626.
[66] Tan Z A,Li L J,Wang F Z,Xu Q,Li S S,Sun G,Tu X H,Hou X L,Hou J H,Li Y F.Adv.Energy Mater.,2014,4:1300884.
[67] Tu X H,Wang F Z,Li C,Tan Z A,Li Y F.J.Phys.Chem.C,2014,118:9309.
[68] Irfan,Ding H J,Gao Y L,Small C,Kim D Y,Subbiah J,So F.App.Phys.Lett.,2010,96:243307.
[69] Brezesinski T,Wang J,Tolbert S H,Dunn B.Nat.Mater.,2010,9:146.
[70] Cao X H,Zheng B,Shi W H,Yang J,Fan Z X,Luo Z M,Rui X H,Chen B,Yan Q Y,Zhang H.Adv.Mater.,2015,27:4695.
[71] Kim H J,Seo K W,Noh Y J,Na S I,Sohn A,Kim D W,Kim H K.Sol.Energy Mater.Sol.Cells,2015,141:194.
[72] Park E K,Kim J H,Kim J H,Park M H,Lee D H,Kim Y S.Thin Solid Films,2015,587:137.
[73] Hammond S R,Meyer J,Widjonarko N E,Ndione P F,Sigdel A K,Garcia A,Miedaner A,Lloyd M T,Kahn A,Ginley D S,Berry J J,Olson D C.J.Mater.Chem.,2012,22:3249.
[74] Kim D Y,Han Y C,Kim H C,Jeong E G,Choi K C.Adv.Funct.Mater.,2015,25:7145.
[75] Sinaim H,Ham D J,Lee J S,Phuruangrat A,Thongtem S,Thongtem T.J.Alloy.Compd.,2015,516:172.
[76] Qiu W M,Hadipour A,Muller R,Conings B,Boyen H G,Heremans P,Froyen L.ACS Appl.Mater.Interf.,2015,6:16335.
[77] Guo J,Zhao Y,Zhao J,Wu J,Song Y,Tan Y,Wang F,Hao X,Lu Y,Bao F.Eur.J.Inorg.Chem.,2014,21:3322.
[78] Liu F,Shao S,Guo X,Zhao Y,Xie Z.Sol.Energy Mater.Sol.Cells,2010,94:842.
[79] Wong K H,Ananthanarayanan K,Luther J,Balaya P J.Phys.Chem.C,2012,116:16346.
[80] Murase S,Yang Y.Adv.Mater.,2012,24:2459.
[81] Dong W J,Jung G H,Lee J L.Sol.Energy Mater.Sol.Cells,2013,116:94.
[82] Wang G,Jiu T,Li P,Li J,Sun C,Lu F,Fang J.Sol.Energy Mater.Sol.Cells,2014,120:603.
[83] Liang J,Zu F S,Ding L,Xu M F,Shi X B,Wang Z K,Liao L S.Appl.Phys.Express,2014,7:111601.
[84] Wang G J,Jiu T G,Li P D,Li J,Sun C M,Lu F S,Fang J F.Sol.Energy Mater.Sol.Cells,2014,120:603.
[85] Wang J T,Zhang J,Meng B,Zhang B H,Xie Z Y,Wang L X.ACS Appl.Mater.Interf.,2015,7:13590.
[86] Qiu W M,Hadipour A,Muller R,Conings B,Boyen H G,Heremans P,Froyen L.ACS Appl.Mater.Interf.,2014,6:16335.
[87] Qiu W M,Muller R,Voroshazi E,Conings B,Carleer R,Boyen H G,Turbiez M,Froyen L,Heremans P,Hadipour A.ACS Appl.Mater.Interf.,2015,7:3581.
[88] Arae S,Nakajima K,Takahashi T,Ogasawara M.Organometallics,2015,34:1197.
[89] Okayama Y,Tsuji S,Toyomori Y,Mori A,Arae S,Wu W Y,Takahashi T,Ogasawara M.Angew.Chem.Int.Ed.,2015,54:4927.
[90] Zilberberg K,Gharbi H,Behrendt A,Trost S,Riedl T.ACS Appl.Mater.Interfaces,2012,4:1164.
[91] Ghaffari M,Zhou Y,Xu H P,Lin M R,Kim T Y,Ruoff R S,Zhang Q M.Adv.Mater.,2013,25:4879.
[92] Lee Y J,Yi J,Gao G F,Koerner H,Park K,Wang J,Luo K,Vaia R A,Hsu J W P.Adv.Energy Mater.,2012,2:1193.
[93] Jasieniak J J,Seifter J,Jo J,Mates T,Heeger A J.Adv.Funct.Mater.,2012,22:2594.
[94] Qiu W M,Muller R,Voroshazi E,Conings B,Carleer R,Boyen H G,Turbiez M,Froyen L,Heremans P,Hadipour A.ACS Appl.Mater.Interf.,2015,7:3581.
[95] Tan Z A,Qian D P,Zhang W Q,Li L J Q,Ding Y Q,Xu Q,Wang F Z,Li Y F.J.Mater.Chem.A,2013,1:657.
[96] Illyaskutty N,Kohler H,Trautmann T,Schwotzer M,Pillai V P M.J.Mater.Chem.C,2013,1:3976.
[97] Yang Q D,Xue H T,Xia Y,Guan Z Q,Cheng Y H,Tsang S W,Lee C S.Electrochim.Acta,2015,185:83.
[98] Wang C,Wu L X,Wang H,Zuo W H,Li Y Y,Liu J P.Adv.Funct.Mater.,2015,25:3524.
[99] Wang J S,Li X,Zhang S F,Lu R W.Nanoscale,2013,5:4823.
[100] Girotto C,Voroshazi E,Cheyns D,Heremans P,Rand B P.ACS Appl.Mater.Interfaces,2011,3:3244.
[101] Lin S Y,Wang C M,Kao K S,Chen Y C,Liu C C.J.Sol-Gel Sci.Technol.,2010,53:51.
[102] Yang T B,Wang M,Cao Y,Huang F,Huang L,Peng J B,Gong X,Cheng S Z D,Cao Y.Adv.Energy Mater.,2012,2:523.
[103] Xie F X,Choy W C H,Wang C D,Li X C,Zhang S Q,Hou J H.Adv.Mater.,2013,25:2051.
[104] Liu J,Wu X,Chen S,Shi X,Wang J,Huang S,Guo X,He G J.Mater.Chem.C,2014,2:158.
[105] Meyer J,Khalandovsky R,Gorrn P,Kahn A.Adv.Mater.,2011,23:70.
[106] Egger D A,Liu Z F,Neaton J B,Kronik L.Nano Letters,2015,15:2448.
[107] Nechyporchuk O,Pignon F,Belgacem M J.Mater.Sci.,2015,50:531.
[108] Huang J H,Huang T Y,Wei H Y,Ho K C,Chu C W.RSC Adv.,2012,2:7487.
[109] Kishi M,Kubo Y,Ishikawa R,Shirai H,Ueno K.Jap.J.App.Phys.,2013,52:020202.
[110] Xu M F,Cui L S,Zhu X Z,Gao C H,Shi X B,Jin Z M,Wang Z K,Liao L S.Org.Electron.,2013,14:657.
[111] Kato S,Ishikawa R,Kubo Y,Shirai H,Ueno K.Jap.J.App.Phys.,2011,50:071604.
[112] Yu X Y,Wang L,Liu J F,Sun X M.Chemelectrochem,2014,1:1476.
[113] Peng X,Huo K F,Fu J J,Gao B,Wang L,Hu L S,Zhang X M,Chu P K.Chemelectrochem,2015,2:512.
[114] Chen Z B,Cummins D,Reinecke B N,Clark E,Sunkara M K,Jaramillo T F.Nano Letters,2011,11:4168.
[115] Gacitua M,Boutaleb Y,Cattin L,Abe S Y,Lare Y,Soto G,Louarn G,Morsli M,Rehamnia R,del Valle M A,Drici A,Bernede J C.Physica Status Solidi a-Applications and Materials Science,2010,207:1905.
[116] Zhao J B,Li Y K,Yang G F,Jiang K J,Lin H R,Ade H,Ma W,Yan H.Nature Energy,2016,1:15027.
[117] Wang Z Y,Zhang Y J,Zhang J Q,Wei Z X,Ma W.Adv.Energy Mater.,2016,1:1502456.
[118] Jia X K,Jiang Z Y,Chen X H,Zhou J P,Pan L K,Zhu F R,Sun Z,Huang S M.ACS Appl.Mater.Interfaces,2016,8:3792.
[119] Liu J,Lu S M,Zhu L,Li X C,Choy W C H.Nanoscale,2016,8:3638.
[1] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[2] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[3] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[4] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[5] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[6] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[7] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[8] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[9] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.