中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 1031-1043 DOI: 10.7536/PC181202 Previous Articles   Next Articles

Large-Area Perovskite Solar Cells

Yeling Yan1, Junmei Cao1, Fanning Meng1, Ning Wang1, Liguo Gao1,**, Tingli Ma2,**   

  1. 1.State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China
    2.Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
  • Received: Online: Published:
  • Contact: Liguo Gao, Tingli Ma
  • About author:
    ** E-mail:(Liguo Gao);
  • Supported by:
    National Natural Science Foundation of China(51772039); National Natural Science Foundation of China(21703027); National Natural Science Foundation of China(51273032); National Natural Science Foundation of China(91333104)
Richhtml ( 105 ) PDF ( 1597 ) Cited
Export

EndNote

Ris

BibTeX

Perovskite solar cells have been paid much attention due to their high efficiency, low cost, suitable to flexible devices. The recent research progress of large-area perovskite solar cells, including their current development, remained issues, and fabricating techniques are systematically reviewed. Furthermore, the approaches to improve power conversion efficiency and stability are summarized. Finally, the application challenges of large-area perovskite solar cells are prospected.

Fig. 1 Schematics of three typical perovskite solar cell architectures[16]. Copyright 2018, Spring Nature.
Fig. 2 Schematic illustration of one-step and two-step deposited perovskite films[15] . Copyright 2017, Elsevier.
Fig. 3 Schematic illustration of the annealing processes and SEM images of perovskite film[27] . Copyright 2017, American Chemical Society.
Fig. 4 Illustrations of LT-SCD[33] . Copyright 2017, WILEY-VCH.
Fig. 5 Diagram of the plate processing method for the deposition of perovskite films[34]. Copyright 2017, Spring Nature.
Fig. 6 Cross-sectional-view SEM image of the perovskite solar cells based on 1.1-μm-thick films[37]. Copyright 2018, Spring Nature.
Fig. 7 Schematic illustration of a slot die coating process[41]. Copyright 2018, Elsevier.
Fig. 8 Schematic view of the blade coating process with directed nitrogen stream drying[49].Copyright 2018, John Wiley and Sons.
Fig. 9 Schematic drawing for the preparation of the mixed CsxFA1-xPbI3 perovskite[36]. Copyright 2017, WILEY-VCH.
Fig. 10 Perovskite formation process without and with formamide additive[52] . Copyright 2018, WILEY-VCH.
Fig. 11 20%-efficiency p-i-n-type perovskite cells with 1 cm2 active area[67]. Copyright 2018, Spring Nature.
Fig. 12 SEM image of the inverted structure perovskite solar cell with Zracac cathode interfacial layer(scale bar: 500 nm)[89] . Copyright 2017, WILEY-VCH.
Fig. 13 Device cartoon of perovskite solar cells[102].Copyright 2018, Spring Nature.
Fig. 14 Image of a monolithic printable PSM[104]. Copyright 2017, WILEY-VCH.
Fig. 15 Patents of perovskite solar cells[121]
Fig. 16 (a) The 7 m2 perovskite solar panels with a screen-printed perovskite.(b,c) Power station set up at Weihua Solar[123].Copyright 2018, American Chemical Society.
[1]
Zhang F, Bi D, Pellet N, Xiao C, Li Z, Berry J J, Zakeeruddin S M, Zhu K, Grätzel M . Energy Environ. Sci., 2018,11:3480.
[2]
Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis T S, Li X, Wang S, Xiao Y, Zakeeruddin S M, Bi D, Grätzel M . Adv. Mater., 2017,29:1606806.
[3]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I . Science, 2017,356:1376.
[4]
Kojima A, Teshima K, Shirai Y, Miyasaka T . J.Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

doi: 10.1021/ja809598r pmid: 19366264
[5]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Hum phry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G . Sci. Rep., 2012,2:591.
[6]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J . Science, 2012,338:643.
[7]
Liu M, Johnston M B, Snaith H J . Nature, 2013,501:395.
[8]
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y . Science, 2014,345:542.
[9]
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I . Science, 2015,348:1234.
[10]
Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A, Zettl A . Nat. Mater., 2017,16:522.
[11]
Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J . Nat. Photonics, 2019, DOI: https://doi.org/10.1038/s41566-019-0398-2.
[12]
[2018-12-01]. . https://www.nrel.gov/pv/cell-efficiency.html
[13]
Yang M, Kim D H, Klein T R, Li Z, Reese M O, Tremolet de Villers B J, Berry J J, van Hest M F A M, Zhu K . ACS Energy Lett., 2018,3:322.
[14]
Matteocci F, Cinà L, di Giacomo F, Razza S, Palma A L, Guidobaldi A, D’Epifanio A, Licoccia S, Brown T M, Reale A, di Carlo A. Prog . Photovoltaics, 2016,24:436.
[15]
Assadi M K, Bakhoda S, Saidur R, Hanaei H . Renewable Sustainable Energy Rev., 2018,81:2812.
[16]
Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F A M, Zhu K . Nat. Rev. Mater., 2018,3:18017.
[17]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H . Science, 2014,345:295.
[18]
Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H . Adv. Mater., 2018,30:1705786.
[19]
Wang F, Cao Y, Chen C, Chen Q, Wu X, Li X, Qin T, Huang W . Adv. Funct. Mater., 2018,28:1803753.
[20]
Ran C, Xu J, Gao W, Huang C, Dou S . Chem. Soc. Rev., 2018,47:4581.
[21]
Huang F, Li M, Siffalovic P, Cao G, Tian J . Energy Environ. Sci., 2019,12:518.
[22]
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I . Nat. Mater., 2014,13:897.
[23]
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L . Angew. Chem. Int. Ed., 2014,53:9898.
[24]
Zhou Y, Yang M, Wu W, Vasiliev A L, Zhu K, Padture N P . J. Mater. Chem. A, 2015,3:8178.
[25]
Yin M, Xie F, Chen H, Yang X, Ye F, Bi E, Wu Y, Cai M, Han L . J. Mater. Chem. A, 2016,4:8548.
[26]
Yu Y, Yang S, Lei L, Cao Q, Shao J, Zhang S, Liu Y . ACS Appl. Mater. Interfaces, 2017,9:3667.
[27]
Kim M, Kim G H, Oh K S, Jo Y, Yoon H, Kim K H, Lee H, Kim J Y, Kim D S . ACS Nano, 2017,11:6057.
[28]
Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez J Z, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H . Science, 2017,355:722.
[29]
Matsui T, Yamamoto T, Nishihara T, Morisawa R, Yokoyama T, Sekiguchi T, Negami T . Adv. Mater., 2019,1806823.
[30]
Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J . Adv. Mater., 2017,29:1703852.
[31]
Kim Y Y, Park E Y, Yang T Y, Noh J H, Shin T J, Jeon N J, Seo J . J. Mater. Chem. A, 2018,6:12447.
[32]
Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L . Energy Environ. Sci., 2016,9:2295.
[33]
Ye F, Tang W, Xie F, Yin M, He J, Wang Y, Chen H, Qiang Y, Yang X, Han L . Adv. Mater., 2017,29:1701440.
[34]
Chen H, Ye H, Tang W, He J, Yin M, Wang Y, Xie F, Bi F, Yang F, Grätzel M, Han L . Nature, 2017,550:92.
[35]
Chen X, Cao H, Yu H, Zhu H, Yang L, Yin S . J. Mater. Chem. A, 2016,4:9124.
[36]
Jiang Y, Leyden M R, Qiu L, Wang S, Ono L K, Wu Z, Juarez-Perez E J, Qi Y . Adv. Funct. Mater., 2018,28:1703835.
[37]
Liu Z, Qiu L, Juarez Perez E J, Hawash Z, Kim T, Jiang Y, Wu Z, Raga S R, Ono L K, Liu S F, Qi Y . Nat. Commun., 2018,9:3880.
[38]
Luo L, Zhang Y, Chai N, Deng X, Zhong J, Huang F, Peng Y, Ku Z, Cheng Y B . J. Mater. Chem. A, 2018,6:21143.
[39]
Razza S, di Giacomo F, Matteocci F, Cinà L, Palma A L, Casaluci S, Cameronv S, D’Epifanio A, Licoccia S, Reale A, Brown T M, di Carlo A . J.Power Sources, 2015,277:286.
[40]
Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J . Nat. Energy, 2018,3:560.
[41]
Di Giacomo F, Shanmugam S, Fledderus H, Bruijnaers B J, Verhees W J H, Dorenkamper M S, Veenstra S C, Qiu W, Gehlhaar R, Merckx T, Aernouts T, Andriessen R, Galagan Y . Sol. Energy Mater. Sol. C, 2018,181:53.
[42]
Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y . Nano Energy, 2018,46:203.
[43]
Kim J, Yun J S, Cho Y, Lee D S, Wilkinson B, Soufiani A M, Deng X, Zheng J, Shi A, Lim S, Chen S, Hameiri Z, Zhang M, Lau C F J, Huang S, Green M A, Ho-Baillie A W Y . ACS Energy Lett., 2017,2:1978.
[44]
Chiang C H, Lin J W, Wu C G . J. Mater. Chem. A, 2016,4:13525.
[45]
Rong Y, Ming Y, Ji W, Li D, Mei A, Hu Y, Han H . J.Phys. Chem. Lett., 2018,9:2707. https://www.ncbi.nlm.nih.gov/pubmed/29738259

doi: 10.1021/acs.jpclett.8b00912 pmid: 29738259
[46]
Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q . Mater. Today Energy, 2018,10:146.
[47]
Bishop J E, Mohamad D K, Wong-Stringer M, Smith A, Lidzey D G . Sci. Rep., 2017,7:7962.
[48]
Lee D, Jung Y S, Heo Y J, Lee S, Hwang K, Jeon Y J, Kim J E, Park J, Jung G Y, Kim D Y, ACS Appl . Mater. Interfaces, 2018,10:16133.
[49]
Kohlstädt M, Yakoob M A, Würfel U . Physica Status Solidi, 2018,215:1800419.
[50]
Li X, Bi D, Yi C, Decoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A, Grätzel M . Science, 2016,353:58.
[51]
Qiu W, Merckx T, Jaysankar M, Masse de la Huerta C, Rakocevic L, Zhang W, Paetzold U W, Gehlhaar R, Froyen L, Poortmans J, Cheyns D, Snaith H J, Heremans P . Energy Environ. Sci., 2016,9:484.
[52]
Kim J, Saidaminov M I, Tan H, Zhao Y, Kim Y, Choi J, Jo J W, Fan J, Quintero-Bermudez R, Yang Z, Quan L N, Wei M, Voznyy O, Sargent E H . Adv. Mater., 2018,30:1706275.
[53]
Heo J H, Lee M H, Jang M H, Im S H . J. Mater. Chem. A, 2016,4:17636.
[54]
Zhou Y, Game O S, Pang S, Padture N P . J.Phys. Chem. Lett., 2015,6:4827. https://www.ncbi.nlm.nih.gov/pubmed/26560696

doi: 10.1021/acs.jpclett.5b01843 pmid: 26560696
[55]
Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L . Adv. Mater., 2017,29:1701073.
[56]
Lee J W, Kim H S, Park N G . Acc. Chem. Res., 2016,49:311.
[57]
Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K, Zhao Y . Nat. Commun., 2016,7:12305.
[58]
Dong Q, Yuan Y, Shao Y, Fang Y, Wang Q, Huang J . Energy Environ. Sci., 2015,8:2464.
[59]
Seo J Y, Matsui T, Luo J, Saliba M, Schenk K, Ummadisingu A, Abate A . Adv. Energy Mater., 2016,6:1600767.
[60]
Wang Y, Zhou Y, Zhang T, Ju M G, Zhang L, Kan M, Li Y, Zeng X C, Padture N P, Zhao Y . Mater. Horiz., 2018,5:868.
[61]
Zhang F, Cong J, Li Y, Bergstrand J, Liu H, Cai B, Hajian A, Yao Z, Wang L, Hao Y, Yang X, Gardner J M, Ågren H, Widengren J, Kloo L, Sun L . Nano Energy, 2018,53:405.
[62]
Eperon G E, Burlakov V M, Docampo P, Snaith H J . Adv. Funct. Mater., 2014,24:151.
[63]
Rajagopal A, Yao K, Jen A K . Adv. Mater., 2018,30:1800455.
[64]
Wang Q, Chen B, Liu Y, Deng Y, Bai Y, Dong Q, Huang J . Energy Environ. Sci., 2017,10:516.
[65]
Lee J, Kang H, Kim G, Back H, Kim J, Hong S, Park B, Lee E, Lee K . Adv. Mater., 2017,29:1606363.
[66]
Lu J, Lin X, Jiao X, Gengenbach T, Scully A D, Jiang L, Tan B, Sun J, Li B, Pai N K, Bach U, Simonov A N, Cheng Y B . Energy Environ. Sci., 2018,11:1880.
[67]
Stolterfoht M, Wolff C M, Márquez J A, Zhang S, Hages C J, Rothhardt D, Albrecht S, Burn P L, Meredith P, Unold T, Neher D . Nat. Energy, 2018,3:847.
[68]
Agresti A, Pescetelli S, Palma A L, Del Rio Castillo A E, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F, di Carlo A . ACS Energy Lett., 2017,2:279.
[69]
Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G . Nano Lett., 2013,13:2412.
[70]
Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y . J.Am. Chem. Soc., 2015,137:6730. https://www.ncbi.nlm.nih.gov/pubmed/25987132

doi: 10.1021/jacs.5b01994 pmid: 25987132
[71]
Liu D, Kelly T L . Nat. Photonics, 2013,8:133.
[72]
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I . Nat. Photonics, 2013,7:486.
[73]
Christians J A, Fung R C, Kamat P V . J.Am. Chem. Soc., 2014,136:758. https://www.ncbi.nlm.nih.gov/pubmed/24350620

doi: 10.1021/ja411014k pmid: 24350620
[74]
Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M . Nat. Commun., 2014,5:3834.
[75]
Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C . Adv. Mater., 2013,25:3727.
[76]
Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J . Energy Environ. Sci., 2014,7:2359.
[77]
Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J . Adv. Mater., 2014,26:4107.
[78]
Ye S, Sun W, Li Y, Yan W, Peng H, Bian Z, Liu Z, Huang C . Nano Lett., 2015,15:3723.
[79]
He J, Bi E, Tang W, Wang Y, Yang X, Chen H, Han L . Nano-Micro Lett., 2018,10:49.
[80]
Singh M, Chiang C H, Boopathi K M, Hanmandlu C, Li G, Wu C G, Lin H C, Chu C W . J. Mater. Chem. A, 2018,6:7114.
[81]
Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T . J. Phys. Chem. C, 2015,119:10212.
[82]
Dong Q, Wang M, Zhang Q, Chen F, Zhang S, Bian J, Ma T, Wang L, Shi Y . Nano Energy, 2017,38:358.
[83]
Dong Q, Shi Y, Zhang C, Wu Y, Wang L . Nano Energy, 2017,40:336.
[84]
Guo Z, Gao L, Zhang C, Xu Z, Ma T . J. Mater. Chem. A, 2018,6:4572.
[85]
Zhao E, Gao L, Yang S, Wang L, Cao J, Ma T . Nano Research, 2018,11:5913.
[86]
Calabrò E, Matteocci F, Palma A L, Vesce L, Taheri B, Carlini L, Pis I, Nappini S, Dagar J, Battocchio C, Brown T M, Carlo A D . Sol. Energy Mater. Sol. C, 2018,185:136.
[87]
Yang G, Chen C, Yao F . Adv. Mater., 2018,30:1706023.
[88]
Chang C Y, Huang W K, Chang Y C, Lee K T, Chen C T . J. Mater. Chem. A, 2016,4:640.
[89]
Chen W, Xu L, Feng X, Jie J, He Z . Adv. Mater., 2017,29:1603923.
[90]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J . Nat. Energy, 2018,3:682.
[91]
Ge Q Q, Shao J Y, Ding J, Deng L Y, Zhou W K, Chen Y X, Ma J Y, Wan L J, Yao J, Hu J S, Zhong Y W . Angew. Chem. Int. Ed. Engl., 2018,57:10959.
[92]
Chiang C H, Chen C C, Nazeeruddin M K, Wu C G . J. Mater. Chem. A, 2018,6:13751.
[93]
Back H, Kim J, Kim G, Kim T K, Kang H, Kong J, Lee S H, Lee K . Sol. Energy Mater. Sol. C, 2016,144:309.
[94]
Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M . ACS Nano, 2016,10:6306.
[95]
You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, Marco N D, Yang Y . Nat. Nanotechnol., 2016,11:75.
[96]
Kaltenbrunner M, Adam G, Glowacki E D, Drack M, Schwodiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S . Nat. Mater., 2015,14:1032.
[97]
Sanehira E M, Tremolet de Villers B J, Schulz P, Reese M O, Ferrere S, Zhu K, Lin L Y, Berry J J, Luther J M . ACS Energy Lett., 2016,1:38.
[98]
Ku Z, Rong Y, Xu M, Liu T, Han H . Sci Rep., 2013,3:3132.
[99]
Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T . J. Mater. Chem. A, 2019,7:8690.
[100]
Wei Z, Yan K, Chen H, Yi Y, Zhang T, Long X, Li J, Zhang L, Wang J, Yang S . Energy Environ. Sci., 2014,7:3326.
[101]
Meng F, Gao L, Yan Y, Cao J, Wang N, Ma T . Carbon, 2019,145:290.
[102]
Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, de Angelis F, Grätzel M, Nazeeruddin M K . Nat. Commun., 2017,8:15684.
[103]
Bashir A, Shukla S, Lew J H, Shukla S, Bruno A, Gupta D, Baikie T, Patidar R, Akhter Z, Priyadarshi A, Mathews N, Mhaisalkar S G . Nanoscale, 2018,10:2341.
[104]
Hu Y, Si S, Mei A, Rong Y, Liu H, Li X, Han H . Solar RRL, 2017,1:1600019.
[105]
Deng W, Liang X, Kubiak P S, Cameron P J . Adv. Energy Mater., 2018,8:1701544.
[106]
Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z . Adv. Mater., 2018,30:1703487.
[107]
Gao L, Zhang F, Xiao C, Chen X, Larson B W, Berry J J, Zhu K . Adv. Funct. Mater., 2019: 1901652.
[108]
Zuo C, Scully A D, Vak D, Tan W, Jiao X, McNeill C R, Angmo D, Ding L, Gao M . Adv. Energy Mater., 2019,9:1803258.
[109]
Xu T, Chen L, Guo Z, Ma T . Phys. Chem. Chem. Phys., 2016,18:27026.
[110]
Chen Y, Zhang L, Zhang Y, Gao H, Yan H . RSC Adv., 2018,8:10489.
[111]
Yang S, Song X, Gao L, Wang N, Ding X, Wang S, Ma T . ACS Appl. Energy. Mater., 2018,1:4564.
[112]
Wang K, Shi Y, Li B, Zhao L, Wang W, Wang W, Bai X, Wang S, Hao C, Ma T . Adv. Mater., 2016,28:1891.
[113]
Wang K, Shi Y, Gao L, Chi R, Shi K, Guo B, Zhao L, Ma T . Nano Energy, 2017,31:424.
[114]
Zhang H, Wang H, Chen W, Jen A K . Adv. Mater., 2017,29:1604984.
[115]
Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X . Science, 2015,350:944.
[116]
Gong J, Darling S B, You F . Energy Environ. Sci., 2015,8:1953.
[117]
Zhang C, Gao L, Hayase S, Ma T . Chem. Lett., 2017,46:1276.
[118]
Liao W, Zhao D, Yu Y, Grice C R, Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y . Adv. Mater., 2016,28:9333.
[119]
Maniarasu S, Korukonda T B, Manjunath V, Ramasamy E, Ramesh M, Veerappan G . Renew. Sus. Energ. Rev., 2018,82:845.
[120]
Hu T, Becker T, Pourdavoud N, Zhao J, Brinkmann K O, Heiderhoff R, Gahlmann T, Huang Z, Olthof S, Meerholz K, Tobbens D, Cheng B, Chen Y, Riedl T . Adv. Mater., 2017,29:1606656.
[121]
Snaith H J . Nat. Mater., 2018,17:372.
[122]
[2018-12-01]. . https://www.nrel.gov/pv/module-efficiency.html
[123]
Galagan Y . J.Phys. Chem. Lett., 2018,9:4326. https://www.ncbi.nlm.nih.gov/pubmed/30024760

doi: 10.1021/acs.jpclett.8b01356 pmid: 30024760
[124]
Zuo C, Bolink H J, Han H, Huang J, Cahen D . Adv. Science, 2016,3:1500324.
[125]
Zuo C, Vak D, Angmo D, Ding L, Gao M . Nano Energy, 2018,46:185.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[6] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[7] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[8] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[9] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[10] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[11] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[12] Cheng Peng, Leyun Wu, Zhijian Xu, Weiliang Zhu. Replica Exchange Molecular Dynamics [J]. Progress in Chemistry, 2022, 34(2): 384-396.
[13] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[14] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[15] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
Viewed
Full text


Abstract

Large-Area Perovskite Solar Cells