中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (8): 1265-1288 DOI: 10.7536/PC151105 Previous Articles   

• Review and comments •

Solid Oxide Electrolyzer Cells

Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing   

  1. Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273128, 51202123) and Program for Changjiang Scholars and Innovative Research Team in University (IRT13026)
PDF ( 1611 ) Cited
Export

EndNote

Ris

BibTeX

The rapid growth of energy demand and carbon emission poses unprecedented challenges to sustainable development and economic expansion worldwide. Development of clean energy has become a common choice worldwide. The promising alternative clean energies include solar, wind, geothermal, biomass and nuclear. And research and development in energy conversion and storage have becoming increasingly attractive. Solid oxide electrolyzer cell (SOEC) is an advanced electrochemical energy conversion device, which can produce hydrogen or synthesis gas by highly efficient electrolysis of H2O or CO2+H2O using a high temperature heat and electrical energy. The high temperature heat and electricity could be supplied simultaneously by the clean primary energy (solar, wind or nuclear energy). Also, SOEC can be operated reversibly in fuel cell mode (Solid oxide fuel cell, SOFC) for electricity production when additional electricity is needed. SOEC is a potential technology for large scale energy conversion and storage application due to the advantages of highly efficient, simple, flexible and environmentally friendly features. In this paper, the principle of SOEC is introduced respectively in detail from the perspective of thermodynamic and kinetic analysis. The current state-of-the art key materials used in solid oxide electrolysis tests are summarized, including anode, cathode, electrolyte materials and so on. The recent development in advanced stack technologies are overviewed worlwide, the main degradation modes and mechanisms of SOEC are pointed out and discussed, and the economic competitiveness of SOEC technology is carefully analyzed. On this basis, the potential application prospect of SOEC in the future are given.

Contents
1 Introduction
2 Principle of SOEC
2.1 Compositon of Electrolysis cells
2.2 Thermodynamics of electrolysis
2.3 Kinetics of electrolysis
3 Key materials
3.1 Anode materials
3.2 Cathode materials
3.3 Electrolyte materials
3.4 Other materials
4 Research statuses of SOEC stacks
5 Degradation mechanisms of SOEC
5.1 Oxygen electrode
5.2 Hydrogen electrode
5.3 Electrolyte
6 Analysis of economic competitiveness
7 Technological prospects

CLC Number: 

[1] 中华人民共和国国务院(Council of People's Republic of China).节能减排"十二五"规划(Energey Saveing of 12th Five-Year Plan), (2012-10-10).[2016-01-30]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201208/t20120821_65505.html.
[2] Jeremy Rifkin. 第三次工业革命(The Third Industrial Revolution).张体伟(Zhang T W),孙豫宁(Sun Y N)(Trans). 北京:中信出版社(Beijing:Citic Press Group), 2012.
[3] 时璟丽(Shi J L), 高虎(Gao H), 王红芳(Wang H F). 中国能源(Energy of China), 2015, 2:11.
[4] 陈冠益(Chen G Y), 孔韡(Kong W), 徐莹(Xu Y), 李婉晴(Li W Q), 马隆龙(Ma L L), 颜蓓蓓(Yan B B), 陈鸿(Chen H). 浙江大学学报(工学版)(Journal of Zhejiang University(Engineering Science)), 2014, 7:1318.
[5] Stoots C M, O'Brien J E, Condie K G, Hartvigens J J. Inter-national Journal of Hydrogen Energy, 2010, 35(10):4861.
[6] Bierschenk D M, Wilson J R, Barnett S A. Energy Environ. Sci., 2011, 4:944.
[7] Jensen S H, Graves C, Mogensen M, Wendel C, Braun R, Hughes G, Gao Z, Barnett S A. Energy Environ. Sci., 2015, 8:2471.
[8] O'Brien J E,Mckellar M G, Stoots C M, Herring J S, Hawkes J L. Int. J. Hydrogen Energy, 2009, 34(9):4216.
[9] O'Brien J E, Stoots C M, Herring J S, Mckellar M G, Harvego E A, Sohal M S, Condie K G. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy Technology Summary (2010-02-01).[2016-01-30].https://www.researchgate.net/publication/255214193_High_Temperature_Electrolysis_for_Hydrogen_Production_from_Nuclear_Energy_TechnologySummary?ev=auth_pub.
[10] 李汶颖(Li W Y). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2015.
[11] Mougin J, Chatroux A, Couturier K, Petitjean M, Rrytier M, Gousseau G, Lefebyre J F. Energy Procedia, 2012, 29:445.
[12] Ni M. International Journal of Hydrogen Energy, 2009, 34(18):7795.
[13] Ni M. Chemical Engineering Journal, 2010, 164(1):246.
[14] Ni M. International Journal of Hydrogen Energy, 2012, 37(8):6389.
[15] Bu Y F, Zhong Q, Xu D D, Zhao X L, Tan W Y. Journal of Power Sources, 2014, 250:143.
[16] Backhaus-Ricoult M, Adib K, Clair T S, Luerssen B, Gregoratti L, Barinov A. Solid State Ionics, 2008, 179(21):891.
[17] Adler S B. Chem. Rev., 2004, 104:4791.
[18] Sase M, Ueno D, Yashiro K, Kaimai A,Kawada T,Mizusaki J.J. Phys. Chem. Solids, 2005, 66:343.
[19] Chroneos A, Yildiz B. Energy Environ. Sci., 2011, 4:2774.
[20] Huaxin L, Xiaoli C, Shigang C, Yucheng W, Kui X. International Journal of Hydrogen Energy, 2015:7920.
[21] Villarreal I, Jacobson C, Leming A, Matus Y, Visco S, Jonghe L D. Electrochemical and Solid-State Letters, 2003, 6(9):A178.
[22] Yu B, Zhang W Q, Xu J M, Chen J. International Journal of Hydrogen Energy, 2010, 35(7):2829.
[23] Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. Journal of Power Sources, 2010, 195(3):744.
[24] Ogier T, Bassat J M, Mauvy F, Fourcade S, Grenier J C, Couturier K, Petitjean M, Mougin J. Fuel Cells, 2013, 13(4):536.
[25] Chen K, Ai N, Jiang S P. Journal of the Electrochemical Society, 2010, 157(11):89.
[26] Rossignol C, Ralph J M, Bae J M, Vaughey J T. Solid State Ionics, 2004, 175(1):59.
[27] Tietz F, Sebold D, Brisse A, Schefold J. Journal of Power Sources, 2013, 223:129.
[28] Wei B, Chen K, Wang C C, Zhe L, Jiang S P. Solid State Ionics, 2015, 281:29.
[29] Shao Z P, Sossina M, Haile S M. Nature, 2004, 431:170.
[30] Shao Z P, Sossina M, Haile S M, Jeongmin A, Paul D R, Zhongliang Z, Scott A B. Nature, 2005, 435:795.
[31] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Yang S H. Science, 2011, 9:1383.
[32] 张文强(Zhang W Q), 于波(Yu B), 张平(Zhang P),徐景明(Xu J M). 中国科学:化学(Scientia Sinica Chimica), 2011, 6:9.
[33] Tedmon C S, Spacil H S, Mitoff S P. Journal of The Elec-trochemical Society, 1969, 116(9):1170.
[34] Laguna-Bercero M A, Kinadjan N, Sayers R, Shinawi H E, Greaves C, Skinner S J. Fuel Cells, 2011, 11(1):102.
[35] Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. Journal of Power Sources, 2010, 195(3):744.
[36] Chroneos A, Parfitt D, Kilner J A, Grimes R W. J. Mater. Chem., 2010, 20(2):266.
[37] Tsekouras G, Irvine J T S. Journal of Materials Chemistry, 2011, 21(25):9367.
[38] Laguna-Bercero M A, Hanifi A R, Monzón H, Cunningham J, Etsell T H. Journal of Materials Chemistry A, 2014, 2(25):9764.
[39] Ting C, Zhou Y, Yuan C, Liu M, Meng X. Journal of Power Sources, 2014, 269:812.
[40] Li J, Zhong C, Meng X, Wu H, Nie H, Zhan Z, Wang S. Fuel Cells, 2014, 14(6):1046.
[41] Sase M, Hermes F, Nakamura T, Yashiro K, Sato K, Mizusaki J. ECS Transactions, 2007, 7(1):1287.
[42] Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H. Solid State Ionics, 2008, 178:1843.
[43] Jeong W H, Bilge Y. Energy & Environmental Science, 2012, 9:8598.
[44] Bentzen J J, Jacobsen T, Skov E. High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors (Eds:Poulsen F W). Danmark:CiNii, 1993.6.
[45] Gool W V, Bottelberghs P H. Journal of Solid States Chemistry,1973, 7(1):59.
[46] Hauch A, Jensen S H, Ramousse S, Mongensen M. Journal of the Electrochemical Society, 2006,153(9):349.
[47] Matsui T, Ozaki A, Kikuchi R, Eguchi K, Singhal S C, Mizusaki J. Electrochemical Society, 2005, 154:1237.
[48] Blennow T P. Master Dissertation of Lund University, 2007.
[49] Marina O A, Pederson L R, Williams M C, Coffey W, Meinhardt K D, Nguyen C D. Journal of the Electrochemical Society, 2007, 154(5):B452.
[50] Tao S W, Irvine J T S. Journal of The Electrochemical Society, 2004, 151(2):A252.
[51] 朱星宝(Zhu X B).哈尔滨工业大学博士论文(Doctor Dissertation of Haerbin Institute of Technology), 2008.
[52] Xu S, Chen S, Li M, Xie K, Wang Y, Wu Y C. Journal of Power Sources, 2013, 239:332.
[53] Li Y, Wu G, Ruan C, Qi Z, Wang Y, Winston D. Journal of Power Sources, 2014, 253:349.
[54] Savaniu C D, Irvine J T S. Journal of Materials Chemistry, 2009, 19(43):8119.
[55] Singhal S. Materials Today, 2002, 5(12):55.
[56] Eguchi K, Hatagishi T, Arai H. Solid State Ionics, 1996, 86:1245.
[57] Xie K, Zhang Y, Meng G, Irvine J T S. Energy & Environmental Science, 2011, 4(6):2218.
[58] Hauch A, Ebbesen S D, Jensen S H, Mongensen M. Journal of Materials Chemistry, 2008, 18(20):2331.
[59] Fergus J. Solid State Ionics, 2004, 171:1.
[60] Piccardo P, Gannon P, Chevalier S, Viviani M, Barbucci A, Caboche G, Amendola R, Fontana S. Surf. Coat. Technol., 2007, 202:1221.
[61] Yang Z, Xia G, Stevenson J. J. Power Sources, 2006, 160:1104.
[62] Jablonski P, Alman D. Int. J. Hydrogen Energy, 2007, 32:3705.
[63] 吴小芳(Wu X F),张文强(Zhang W Q),于波(Yu B),郭绪强(Guo X Q),徐景明(Xu J M).稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(3):1555.
[64] Yang C H, Coffin A, Chen F L. International Journal of Hydrogen Energy, 2010, 35:3221.
[65] Santacreu P O, Girardon P, Zahid M, Van Herle J, Wyser A H, Mougin J, Shemet V. ECS Transactions, 2011, 35(1):2481.
[66] Xu Y, Wen Z, Wang S, Wen T. Solid State Ionics, 2011, 192(1):561.
[67] 吴晓芳(Wu X F), 中国石油大学硕士毕业论文(Master Dissertation of China University of Petroleum), 2014.
[68] Lin C K, Huang L H, Chiang L K, Chyou Y P. Journal of Power Sources, 2009, 192(2):515.
[69] Singh R N.International Journal of Applied Ceramic Technology, 2007, 4(2):134.
[70] Nielsen K A, Solvang M, Nielsen S B L, Dinesen A R, Beeaff D, Larsen P H. Journal of the European Ceramic Society, 27(s 2/3):1817.
[71] Fergus J W. Journal of Power Sources, 2005, 147(1/2):46.
[72] Nishiura H, Suzuki R O, Ono K. Journal of the American Ceramic Society, 1998, 81(8):2181.
[73] Duquette J, Petric A. Journal of Power Sources, 2004, 137(1):71.
[74] Chou Y S, Stevenson J W. Journal of Materials Research, 2003, 18(9):2243.
[75] Singh P, Yang Z, Viswanathan V, Stevenson J W. Journal of Materials Engineering and Performance, 2004, 13(3):287.
[76] Chou Y S, Stevenson J W, Singh P. Journal of Power Sources, 2005, 152:168.
[77] Spacil H S, Tedmon C S. Electrochem. Soc.,1969,116:1618.
[78] Donitz W, Dietrich G, Erdle E,Streicher R. Hydrogen Energy, 1988, 13:283.
[79] O'Brien J E, Stoots C M, Herring J S, Lessing P A. Journal of Fuel Cell Science and Technology, 2005, 2:156.
[80] Stoots C M. High-temperature Co-electrolysis of H2O and CO2 for Syngas Production. Hawaii:Scitech Connect, 2006, 13.
[81] Schefold J, Brisse A, Tietz F. Journal of the Electrochemical Society, 2012,159(2):A137.
[82] Ebbesen S D, Høgh J, Nielsen K A. International Journal of Hydrogen Energy, 2011, 36(13):7363.
[83] Zhang W Q, Yu B, Xu J. Fule & Energy Abstract, 2012, 37(1):837842.
[84] Carl S, James O, Joseph H. International Journal of Hydrogen Energy, 2009, 34:4208.
[85] Zhang X, O'Brien J E, Tao G, Zhou C, Housley G K. Journal of Power Sources, 2015, 297:90.
[86] Zhang X, O'Brien J E, O'Brien R C, Hartvigsen J J, Tao G, Housley G K.International Journal of Hydrogen Energy, 2013, 38(1):20.
[87] O'Brien J E, Mckellar M G, Harvego E A, Stoots C M.International Journal of Hydrogen Energy, 2010, 35(10):4808.
[88] Blum L, de Haart L G J B, Malzbender J, Menzler N H, Remmel J, Steinberger W. Journal of Power Sources, 2013, 241:477.
[89] Nguyen V N, Fang Q, Packbier U, Blum L. International Journal of Hydrogen Energy, 2013, 38(11):4281.
[90] Petipas F, Brisse A, Bouallou C. Journal of Power Sources, 2013, 239:584.
[91] Mougin J, Mansuy A, Chatroux A, Gousseau G, Petitjean M, Reytier M. Fuel Cells, 2013,13(4):623.
[92] Zhang H, Zhang H, Li X, Mai Z, Zhang J. Energy & Environmental Science, 2011,4(5), 1676.
[93] 陈建颖(Chen J Y),曾凡蓉(Zeng F R), 王绍荣(Wang S R),等. 化学进展(Progress in Chemistry), 2011, 23(2/3):463.
[94] Le S, Wang S, Qian J, Ye X, Wen T. International Journal of Hydrogen Energy, 2013, 38(11):4272.
[95] 官万兵(Guan W B). 硅酸盐通报(Bulletin of Chinese Ceramic Society), 2014, 32:1140.
[96] Guan W B, Zhai H J, Jin L, Li T S, Wang W G. Fuel Cells, 2011, 11(3):445.
[97] Herring J S, O'Brien J E, Stoots C M, Hawkes G L, Hartvigsen J J, Shahnam M. International Journal of Hydrogen Energy, 2007, 32(4):440.
[98] Sohal M S, O'Brien JE, Stoots C M, Sharma V I, Yildiz B, Virkar A. Cheminform., 2010, 9(43):377.
[99] Hauch A, Jensen S H, Bilde-Sørensen J B, Mongensen M. Journal of the Electrochemical Society, 2007, 154(7):A619.
[100] W Wang W, Huang Y, Jung S, Vohs J M, Gorte R J. Journal of the Electrochemical Society, 2006, 153(11):A2066.
[101] Matsuzaki Y, Yasuda I. Journal of the Electrochemical Society, 2001, 148(2):A126.
[102] Borca C N, Xu B, Komesu T, Jeong H K, Liu M T, Liou S H.Surface Science, 2002, 512(1):L346.
[103] Dulli H, Plummer E W, Dowben P A, Choi J,Liou S H.Applied Physics Letters, 2000, 77(4):570.
[104] Savaniu C D, Irvine J T S. Journal of Materials Chemistry, 2009, 19(43):8119.
[105] Sohal M S, O'Brien J E, Stoots C M, Herring J S, Hartvigsen J, Larsen D, Elangovan S, Carter J D, Sharma V I, Yildiz B. Critical Causes of Degradation in Integrated Laboratory Scale Cells during high-Temperature Electrolysis. (2009-05-01)[2016-01-30\]. http://www.osti.gov/scitech/biblio/961923.
[106] Fergus J W. International Journal of Hydrogen Energy, 2007, 32(16):3664.
[107] Stanislowski M, Froitzheim J, Niewolak L, Quadakkers W J, Hilpert K, Markus T. Journal of Power Sources, 2007, 164(2):578.
[108] Zhen Y, Tok A I Y, Boey F Y C, Jiangb S P. Electrochemical and Solid-State Letters, 2008, 11(3):B42.
[109] Virkar A V. International Journal of Hydrogen Energy, 2010, 35(18):9527.
[110] Fleig J. Annual Review of Materials Research, 2003, 33(1):361.
[111] Jacobsen T, Mogensen M. ECS Trans., 2008, 13:259.
[112] Rashkeev S N, Glazoff M V. J. Hydrogen Energy, 2012, 37:1280.
[113] Liang M, Yu B, Wen M, Chen J, Xu J, Zhai Y. J. Power Sources, 2009, 190:341.
[114] Backhaus-Ricoult M, Adib K, Clair T S, Luerssen B, Gregoratti L, Barinov A. Solid State Ionics, 2007, 179:891.
[115] Keane M, Mahapatra M K, Verma A, Singh P. J. Hydrogen Energy, 2012, 37:16776.
[116] Zheng Y, Li Q, Chen T, Wu W, Cheng X, Wei G W. International Journal of Hydrogen Energy, 2015, 40(6):2460.
[117] Hauch A, Ebbesen S D, Jensen S H, Mogensen. J. Electrochem. Soc., 2008, 155(11):1184.
[118] Schefold J, Brisse A, Tietz F. J. Electrochem. Soc., 2012, 159:A137.
[119] Hjalmarsson P, Sun X, Liu Y L, Chen M. J. Power Sources, 2013, 223:349.
[120] Borglum B. Ecs Transactions, 2009, 17(1):63.
[121] Lay-Grindler E, Laurencin J, Villanova J, Cloetens P, Bleuet P, Mansuy A. Journal of Power Sources, 2014, 269:927.
[122] Osinkin D, Kuzin B, Bogdanovich N. Electrolyte. Russ J. Electrochem., 2010, 46:41.
[123] Ebbesen S D, Høgh J, Nielsen K A, Nielsen J U, Mogensen M J. Fuel & Energy Abstract, 2011, 36:7363.
[124] Tietz F, Sebold D, Brisse A, Schefold J. J. Power Sources, 2013, 223:129.
[125] Knibbe R, Traulsen M L, Hauch A, Ebbesen S D, Mogensen M. J. Electrochem. Soc., 2010, 157(8):1209.
[126] Tietz F, Sebold D, Brisse A, Schefold J. J. Power Sources, 2013, 223:129.
[127] Rami S E, Hasan Ozcan, Ibrahim Dincer. International Journal of Hydrogen Energy, 2015, 40:11168.
[128] Ebbesen S D, Jensen S H, Hauch A, Mogensen M B. Chemical Review, 2014, 114(21):10697.
[129] Ni M, Leung M K H, Leung D C. J. Hydrogen Energy, 2007, 32:4648.
[130] Raissi A, Block D L. IEEE Power Energy Mag., 2004, 2:40.
[131] Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L. Energy Environ. Sci., 2010, 3:1382.
[132] Macelroy J M D. Ambio, 2016, 45(1):5.
[133] Graves C, Ebbesen S D, Mogensen M, Lackner K S. Renewable Sustainable Energy Rev., 2011, 15:1.
[134] Becker W L, Braun R J, Penev M, Melaina M. Energy, 2012, 47:99.
[135] Rivera-Tinoco R, Mansilla C, Bouallou C. Energy Conversion and Management, 2010, 51:2623.
[136] Minh N Q, Mogensen M B. Electrochem. Soc. Interface, 2013, 22:55.
[137] Joseph D S, Michael R. Innovative Management of Carbon Emmmisions from Fossil Plants(Eds:Pilmer J), Provo, 2010. 25.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[3] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[4] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[5] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[6] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[7] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[8] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[9] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[10] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[11] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[12] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[13] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[14] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
[15] Jianxi Kang, Shirong Wang, Mengna Sun, Hongli Liu, Xianggao Li. Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2017, 29(4): 400-411.
Viewed
Full text


Abstract

Solid Oxide Electrolyzer Cells