中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2715-2728 DOI: 10.7536/PC220511 Previous Articles   

• CONTENTS •

Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors

Yuxaun Du1,3, Tao Jiang1, Meijia Chang2(), Haojie Rong3, Huanhuan Gao1(), Yu Shang1   

  1. 1 School of Materials Science and Engineering, Xi’an Shiyou University,Xi’an 710065, China
    2 School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology,Luoyang 471023, China
    3 Xi’an Modern Chemistry Research Institute,Xi’an 710065, China
  • Received: Revised: Online: Published:
  • Contact: Meijia Chang, Huanhuan Gao
  • Supported by:
    National Natural Science Foundation Research Project of Shaanxi Province(2021JQ-595); National Natural Science Foundation of China(22109063); Xi’an Shiyou University Graduate Innovation and Practical Ability Training Program(YCS21112074); Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0845); Key Projects of Henan Provincial Department of Education(21A150034)
Richhtml ( 38 ) PDF ( 641 ) Cited
Export

EndNote

Ris

BibTeX

Fused-ring electron acceptors (FREAs) based organic solar cells (OSCs) have achieved rapidly development in recent years. However, the complexity of molecular structure of fused-ring electron acceptors leads to high synthesis costs and low yields, limiting their further commercial applications. Non-fused-ring small molecule acceptors have attracted widespread attention due to their simple moleclar structure, structural diversity, and low synthesis cost due to their application of C—C single bonds. In this review, from the perspective of materials design, focusing on the development of non-fused-ring electron acceptors (NFREAs), this paper will briefly discuss the influence of structural regulation on the basic properties, aggregation structure, molecular packing, active layer morphology and the corresponding photovoltaic performances. Further elucidating the structure-property relationships of non-fused-ring acceptor materials. Finally, we will prospect the development and challenge of non-fused-ring acceptors based OSCs from the point view of material design, device optimization, device photovoltaic performance, and device stability.

Contents

1 Introduction

2 Research progress of non-fused ring electron acceptors

2.1 Origin of intramolecular noncovalent interactions

2.2 Application of intramolecular noncovalent interactions in non-fused ring acceptors

2.3 Fully non-fused ring acceptors

2.4 Application of NFREAs with the large steric hindrance side chains

3 Conclusion and outlook

3.1 Material design

3.2 Device optimization

3.3 Morphology optimization

3.4 Device Stability

Fig. 1 Chemical structures of representative IDT-based NFREAs
Table 1 Device performance of organic solar cells based on representative early non-fused ring acceptors
Fig. 2 Chemcial structures of representative NFREAs featuring electron-donating units as the central core
Table 2 Device performance of organic solar cells based on representative non-fused ring acceptors with intramolecular noncovalent Interactions
Fig. 3 Chemcial structures of representative NFREAs featuring electron-withdrawing units as the central core
Fig. 4 Chemcial structures of representative fully NFREAs
Table 3 Device performance of organic solar cells based on representative fully non-fused ring acceptors
Fig. 5 2D-GIWAXS patterns of neat (a)BTCN-O and (b) BTCN-M films. (c) Corresponding intensity profiles in the out-of-plane (OOP) and in-plane (IP) directions. (Reprinted with permission from Ref[47]; Copyright (2018) The American Chemical Society)
Fig. 6 Chemcial structures of representative NFREAs with the large steric hindrance side chains
Table 4 OSCs performances of representative NFREAs with the large steric hindrance side chain based devices
Fig. 7 (a) The single-crystal structure of 2BTh-2F.(b) 3D molecular packing along the b-crystallographic axis and packing along the c-crystallographic axis. (Reprinted with permission from Ref.[51]; Copyright (2021) Wiley-VCH) (c) 2D-GIWAXS patterns of neat acceptors LW-out-2F and LW-in-2F. (Reprinted with permission from Ref[53]; Copyright (2022) Elsevier)
[1]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270: 1789.
[2]
Brus V V, Lee J, Luginbuhl B R, Ko S J, Bazan G C, Nguyen T Q. Adv. Mater., 2019, 31: 1900904.
[3]
Fukuda K, Yu K, Someya T. Adv. Energy Mater., 2020, 10: 2000765.
[4]
Sun Y, Liu T, Kan Y, Gao K, Tang B, Li Y. Small Science., 2021, 1: 2100001.
[5]
Tang Y, Zhao Z, Qin A, Wang D, Tang B Z. Matter, 2021, 4: 2587.
[6]
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv. Mater., 2021, 33: 2102420.
[7]
Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Adv. Mater., 2022, 34: 2109516.
[8]
Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171.
[9]
Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat. Energy, 2021, 6: 605.
[10]
Meng H, Liao C, Deng M, Xu X, Yu L, Peng Q. Angew. Chem. In. Ed., 2021, 60: 22554.
[11]
Duan X, Song W, Qiao J, Li X, Cai Y, Wu H, Zhang J, Hao X, Tang Z, Ge Z, Huang F, Sun Y. Energy Environ. Sci., 2022, 15: 1563.
[12]
Zhan L, Li S, Li Y, Sun R, Min J, Bi Z, Ma W, Chen Z, Zhou G, Zhu H, Shi M, Zuo L, Chen H. Joule, 2022, 6: 662.
[13]
Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater., 2015, 27: 1170.
[14]
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140.

doi: 10.1016/j.joule.2019.01.004
[15]
Yang Y. ACS Nano, 2021, 15: 18679.

doi: 10.1021/acsnano.1c10365 pmid: 34854305
[16]
Min J, Luponosov Y N, Cui C, Kan B, Chen H, Wan X, Chen Y, Ponomarenko S A, Li Y, Brabec C J. Adv. Energy Mater., 2017, 7: 1700465.
[17]
Li N, McCulloch I, Brabec C J. Energy Environm. Sci., 2018, 11: 1355.
[18]
Ma L, Zhang S, Wang J, Xu Y, Hou J. Chem. Commun., 2020, 56: 14337.
[19]
Yang W, Wang W, Wang Y, Sun R, Guo J, Li H, Shi M, Guo J, Wu Y, Wang T, Lu G, Brabec C J, Li Y, Min J. Joule, 2021, 5: 1209.
[20]
Li S, Zhan L, Lau T K, Yu Z P, Yang W, Andersen T R, Fu Z, Li C Z, Lu X, Shi M, Chen H. Small Methods, 2019, 3: 1900531.
[21]
Zhang X, Qin L, Yu J, Li Y, Wei Y, Liu X, Lu X, Gao F, Huang H. Angew. Chem. In. Ed., 2021, 60: 12475.
[22]
Yu Z P, Liu Z X, Chen F X, Qin R, Lau T K, Yin J L, Kong X, Lu X, Shi M, Li C Z, Chen H. Nat. Commun., 2019, 10: 2152.
[23]
Ma L, Zhang S, Zhu J, Wang J, Ren J, Zhang J, Hou J. Nat. Commun., 2021, 12: 5093.
[24]
Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J. Am. Chem. Soc., 2017, 139: 3356.
[25]
Liu Y, Zhang C e, Hao D, Zhang Z, Wu L, Li M, Feng S, Xu X, Liu F, Chen X, Bo Z. Chem. Mater., 2018, 30: 4307.
[26]
Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv. Mater., 2016, 28: 8283.
[27]
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew. Chem. In. Ed., 2017, 56: 3045.
[28]
Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Adv. Mater., 2017, 29: 1703080.
[29]
Li S, Zhan L, Liu F, Ren J, Shi M, Li C Z, Russell T P, Chen H. Adv. Mater., 2018, 30: 1705208.
[30]
Li S, Zhan L, Zhao W, Zhang S, Ali B, Fu Z, Lau T-K, Lu X, Shi M, Li C-Z, Hou J, Chen H. J. Mater. Chem. A, 2018, 6: 12132.
[31]
Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li C-Z, Hou J, Li Y, Chen H. J. Am. Chem.Soc., 2019, 141: 3073.
[32]
Huang H, Guo Q, Feng S, Zhang C e, Bi Z, Xue W, Yang J, Song J, Li C, Xu X, Tang Z, Ma W, Bo Z. Nat. Commun., 2019, 10: 3038.

doi: 10.1038/s41467-019-11001-6 pmid: 31292441
[33]
Chang M, Meng L, Wang Y, Ke X, Yi Y-Q-Q, Zheng N, Zheng W, Xie Z, Zhang M, Yi Y, Zhang H, Wan X, Li C, Chen Y. Chem. Mater., 2020, 32: 2593.
[34]
Wang Y, Liu S, Gao H, Wang L, Wang W, Zhao B, Wu H, Gao C. Dyes and Pigments, 2022, 200: 110178.
[35]
He S, Lin Z, Du F, Wang X, Liu Y, Tang W. Chem. Eng. J, 2022, 441: 135973.
[36]
Yu H, Qi Z, Li X, Wang Z, Zhou W, Ade H, Yan H, Chen K. Sol. RRL, 2020, 4: 2000421.
[37]
Lv R, Geng S, Li S, Wu F, Li Y, Andersen T R, Li Y, Lu X, Shi M, Chen H. Sol. RRL, 2020, 4: 2000286.
[38]
Huang J, Gao C-Y, Fan X-H, Zhu X, Yang L-M. New J. Chem., 2021, 45: 12802.
[39]
Ye S, Chen S, Li S, Pan Y, Xia X, Fu W, Zuo L, Lu X, Shi M, Chen H. ChemSusChem, 2021, 14: 3599.
[40]
Chang M, Zhang Y, Lu B-S, Sui D, Wang F, Wang J, Yang Y, Kan B. Chem. Eng. J, 2022, 427: 131473.
[41]
Pang S, Zhou X, Zhang S, Tang H, Dhakal S, Gu X, Duan C, Huang F, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12: 16531.
[42]
Wang Y, Liu Z, Cui X, Wang C, Lu H, Liu Y, Fei Z, Ma Z, Bo Z. J. Mater. Chem. A, 2020, 8: 12495.
[43]
Liu X, Wei Y, Zhang X, Qin L, Wei Z, Huang H. Sci. China Chem., 2020, 64: 228.
[44]
Zhang X, Li C, Qin L, Chen H, Yu J, Wei Y, Liu X, Zhang J, Wei Z, Gao F, Peng Q, Huang H. Angew. Chem. In. Ed., 2021, 60: 17720.
[45]
Zhou Y, Li M, Lu H, Jin H, Wang X, Zhang Y, Shen S, Ma Z, Song J, Bo Z. Adv. Funct. Mater., 2021, 31: 2101742.
[46]
We T-J, Xiang J, Jain N, Liu Z-X, Chen Z, Xia X, Lu X, Zhu H, Gao F, Li C-Z. J. Energy Chem., 2022, 70: 576.
[47]
Liu D, Yang L, Wu Y, Wang X, Zeng Y, Han G, Yao H, Li S, Zhang S, Zhang Y, Yi Y, He C, Ma W, Hou J. Chem. Mater., 2018, 30: 619.
[48]
Wen T J, Liu Z X, Chen Z, Zhou J, Shen Z, Xiao Y, Lu X, Xie Z, Zhu H, Li C Z, Chen H. Angew.Chem. In. Ed., 2021, 60: 12964.
[49]
Chen Y N, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. Angew. Chem. In. Ed., 2020, 59: 22714.
[50]
Wang X, Lu H, Zhou J, Xu X, Zhang C, Huang H, Song J, Liu Y, Xu X, Xie Z, Tang Z, Bo Z. ACS Appl. Mater. Interfaces, 2021, 13: 39652.
[51]
Wang X, Lu H, Liu Y, Zhang A, Yu N, Wang H, Li S, Zhou Y, Xu X, Tang Z, Bo Z. Adv. Energy Mater., 2021, 11: 2102591.
[52]
Lu H, Wang X, Wang H, Zhang A, Zheng X, Yu N, Tang Z, Xu X, Liu Y, Chen Y-N, Bo Z. Sci. China Chem., 2022, 65: 594.
[53]
Lu H, Wang X, Li S, Li D, Yu N, Tang Z, Liu Y, Xu X, Bo Z. Chem. Eng. J., 2022, 435: 134987.
[54]
Li J, Li H, Ma L, Xu Y, Cui Y, Wang J, Ren J, Zhu J, Zhang S, Hou J. Small Methods, 2022, 2200007.
[1] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[2] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[3] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[4] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[5] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[6] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[7] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[8] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.