中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 817-835 DOI: 10.7536/PC190931 Previous Articles   Next Articles

• Review •

Strategies for Interfacial Modification in Perovskite Solar Cells

Fanning Meng1, Caiyun Liu1, Liguo Gao1,**(), Tingli Ma2,3,**()   

  1. 1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
    2. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
    3. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
  • Received: Revised: Online: Published:
  • Contact: Liguo Gao, Tingli Ma
  • Supported by:
    the National Natural Science Foundation of China(51772039, 21703027, 51273032)
Richhtml ( 54 ) PDF ( 1287 ) Cited
Export

EndNote

Ris

BibTeX

Recently, the certified efficiency of perovskite solar cells(PSCs) has reached 25.2%, which are considered to be the most promising candidate for next-generation thin-film solar cells. However, uncontrollable film morphology and poor crystallinity of perovskite prepared by the solution process restrict the improvement of stability and large-area production of PSCs. To solve this problem, researchers have carried out the interfacial modification between perovskite layer and charge transport layer. Herein, we summarize applications of strategies for interfacial modification in perovskite solar cells from the perspective of methods, materials, and characterization. Meanwhile, the promising prospects of interfacial modification in low-cost and large-area PSCs are provided.

Contents

1 Introduction
2 Structure of PSCs
3 Effect of interfacial modification on PSCs
4 Strategies for interfacial modification

4.1 Methods

4.2 Materials

4.3 Characterization

5 Conclusion and outlook
Fig. 1 (a) Schematic of regular(n-i-p) architecture;(b) Schematic of regular(p-i-n) architecture[51]. Copyright 2018, WILEY-VCH
Fig. 2 Structure of the PSCs with LiF/PbF2 interfacial modification at SnO2/PVK interface[63]. Copyright 2018, Royal Society of Chemistry
Fig. 3 Top view SEM images of (a) KCl thin film(treated with 150 mg·mL-1 KCl solution) and (b) that coated with perovskite precursor solution: scale bars ~3 μm.(c) A schematic diagram of K+/Cl- movement in PVK[64]. Copyright 2018, Royal Society of Chemistry
Fig. 4 (a) Sulfur-functionalized electron transport layer via xanthate annealing;(b) Interfacial structure of the corresponding device[65]. Copyright 2018, WILEY-VCH
Fig. 5 Schematic diagram of a PSC based on the self-assembled monolayer modified SnO2 ETL[67]. Copyright 2017, Royal Society of Chemistry
Fig. 6 (a) Preparation process of dopamine modi?cation layer;(b) Schematic diagram of the dopamine self-assembly between SnO2 and PVK; and(c) Typical device structure[68]. Copyright 2018, American Chemical Society
Fig. 7 (a) Scheme of PSC structure;(b) Charge transfer and transport pathways in PSCs with Al2O3 as blocking underlayer[44]. Copyright 2017, WILEY-VCH
Table 1 The photovoltaic parameters of PSCs fabricated via different methods for interfacial modification
Fig. 8 Application of transparent polymer for interfacial modification in PSCs[35,36,38].(a) PMMA modifying the interface of HTL/Ag[35], Ref 35 Copyright 2014, American Chemical Society;(b) PS insulating layer modifying the interface of PVK/ETL[36], Ref 36 Copyright 2016, WILEY-VCH;(c) SWCNT/GO/PMMA modifying the interface of PVK/Ag[38], Ref 38 Copyright 2016, Royal Society of Chemistry
Fig. 9 Schematics of the carrier dynamics model in PSCs(a) without and(b) with a PMMA layer[46]. Copyright 2017, American Chemical Society
Fig. 10 (a) Schematic of the device structure;(b) Schematic diagram of the first-principle density functional theory calculation of the electrostatic potential for all functional groups on the PMMA chain[48]. Copyright 2018, WILEY-VCH
Fig. 11 Schematic diagram of molecular structures of carbon nanomaterials for interfacial modification in PSCs,(a) α-bis-PCBM[43],(b) functionalized graphene oxide[73],(c) graphdiyne[74],(d) functionalized carbon quantum dots[77]. Ref 43 Copyright 2017, WILEY-VCH; Ref 73 Copyright 2016, Royal Society of Chemistry; Ref 74 Copyright 2015, WILEY-VCH; Ref 77 Copyright 2017, American Chemical Society
Fig. 12 The device configuration of inverted planar PSCs; The chemical structures of the fullerenes used as the ETL and the diethanolamine surface modifier used for NiO anode modification; Energy levels of the device[71]. Copyright 2016, WILEY-VCH
Fig. 13 Possible nature of trap sites and proposed passivation mechanism. (a) Loss of iodine at the surface of the perovskite leads to vacancy sites(hollow boxes) and a resulting net positive charge residing on the Pb atom(shown in green). Photogenerated electrons are then able to fall into this Coulomb trap site, thus neutralizing the charge and rendering the crystal more stable. (b) Thiophene or pyridine molecules can donate electron density to the Pb and form a coordinate or dative covalent bond, effectively neutralizing the excess positive charge in the crystal[82]. Copyright 2014, American Chemical Society
Fig. 14 (a) Schematic illustration of gradient Br doping and PTA organic cation surface passivation on CsPbI3 PVK thin film. XRD patterns evolution of (b) CsPbI3 and PTABr-CsPbI3 thin films heated 80 ℃ in a N2 glovebox for 72 h and(c) PTABr-CsPbI3 and CsPbI3 thin films after exposed to 80%±5% RH at ~35 ℃ for 0.5 h; inset is their photographs[88]. Copyright 2018, American Chemical Society
Fig. 15 Schematic illustration of two neighboring grain structures cross-linked by methyl groups of ZIF-8[92]. Copyright 2018, Royal Society of Chemistry
Fig. 16 Schematic illustration of PCBM/CeO x ETL composite for interfacial modification in p-i-n structural PSC[93]. Copyright 2018, American Chemical Society
Fig. 17 SEM images of PVK films based on (a) SnO2, (b) SnO2/S1(one time treatment),(c) SnO2/S3(three times treatment),(d) SnO2/S5(five times treatment); Column graphs of PVK grain size statistics are shown below correspondingly[65]. Copyright 2018, Wiley-VCH
Table 2 The photovoltaic parameters of PSCs fabricated via different materials for interfacial modification
No. Material Device<break/>structure Interface V oc(V) J sc (mA·cm-2) FF PCE(%) ref
1 PMMA p-i-n PVK/ETL 0.888 17.0 0.62 9.70 34
2 PMMA n-i-p HTL/Ag 1.02 22.71 0.66 15.30 35
3 PS p-i-n PVK/ETL 1.10 22.9 0.806 20.30 36
4 PMMA n-i-p PVK/HTL 1.13 23.7 0.77 21.30 37
5 SWCNT/GO/PMMA n-i-p PVK/HTL 0.97 17.7 0.6 10.40 38
6 PMMA/PCBM n-i-p ETL/PVK 1.16 23.1 0.762 20.40 47
7 PMMA n-i-p ETL/PVK 1.213 22.6 0.761 20.86 48
8 PS n-i-p PVK/HTL 1.09 23.56 0.787 20.20 49
9 α-bis-PCBM n-i-p ETL/PVK 1.13 23.95 0.74 20.80 43
10 C60(CH2)(Ind) p-i-n PVK/ETL 1.13 20.4 0.8 18.10 71
11 Functionalized graphene n-i-p PVK/HTL 0.95 20.58 0.658 12.81 72
12 Functionalized graphene n-i-p PVK/HTL 0.94 23.6 0.658 14.60 73
13 Graphdiyne n-i-p PVK/HTL 0.941 21.7 0.713 14.58 74
14 Graphdiyne n-i-p ETL/PVK 1.128 22.73 0.79 20.55 75
15 Graphdiyne quantum dots n-i-p PVK/HTL 1.124 22.48 0.787 19.89 76
16 Carbon quantum dots n-i-p ETL/PVK 1.136 21.36 0.78 18.89 77
17 Carbon nanoparticles n-i-p PVK/HTL 1.16 22.1 0.71 18.30 78
18 Pyridine n-i-p ETL/PVK 1.15 22.0 0.73 18.50 81
19 Pyridine n-i-p PVK/HTL 1.05 24.1 0.72 16.50 82
20 Thiophene n-i-p PVK/HTL 1.02 21.3 0.68 15.30 82
21 IPFB n-i-p PVK/HTL 1.06 23.38 0.67 15.70 83
22 4-DMABA p-i-n PVK/ETL 1.11 19.87 0.8 19.87 84
23 Formamide n-i-p PVK/HTL 1.17 16.90 0.81 15.86 85
24 PEAI n-i-p PVK/HTL 1.11 18.5 0.696 14.3 86
25 FAL n-i-p PVK/HTL 1.08 22.79 0.756 18.60 87
26 PTABr n-i-p ETL/PVK 1.104 18.76 0.806 17.06 88
27 BrBeAI n-i-p PVK/HTL 1.25 15.33 0.763 14.63 89
28 TMAH n-i-p ETL/PVK 1.17 23.22 0.739 20.1 90
29 CTAB n-i-p PVK/HTL 1.11 23.20 0.74 18.95 91
30 ZIF-8 n-i-p ETL/PVK 1.02 22.82 0.73 16.99 92
31 CeO x p-i-n PVK/ETL 1.115 21.82 0.768 18.69 93
32 CoO n-i-p PVK/HTL 1.181 23.19 0.7568 20.70 94
33 TX p-i-n HTL/PVK 1.094 23.10 0.7498 16.23 95
34 Pr-ITC, Ph-DITC n-i-p PVK/HTL 1.068 22.85 0.7608 18.57 96
35 SmBr3 n-i-p ETL/PVK 1.17 12.75 0.73 10.88 97
36 PTFTS p-i-n HTL/PVK 1.10 20.89 0.819 18.82 98
37 Ca(acac)2 p-i-n ETL/Ag 1.086 23.45 0.7914 20.15 99
38 TFTPA p-i-n PVK/ETL 1.13 21.41 0.802 19.39 100
Fig. 18 Cross-sectional SEM images of PSCs incorporating FAPbI3 films prepared using the FAI·PbI2·(DMSO1- x thiourea x ) adducts(a,c) without(x=0) and(b,d) with thiourea(x=0.2)[80]. Copyright 2016, American Chemical Society
Fig. 19 AFM morphology images and corresponding height profiles across grain boundaries of the perovskite films((a, d) without;(b, e) with PS-5 and(c, f) PS-5 film thoroughly washed with chlorobenzene)[49]. Copyright 2018, Elsevier Ltd
Fig. 20 The in situ pc-AFM photocurrent mapping results and corresponding topography information along with aging time for (a, b) the pristine MAPbI3 film and (c, d) the 4-DMABA modified MAPbI3 film. The scale bars in(a~d) are 1 μm. The dashed squares highlight the same region(position shifted) of the films during pc-AFM tests.(e) Optical images of the two kind MAPbI3 films before and after several hours of aging. The test conditions regarding light and humidity are given.(f) The pc-AFM photocurrent mapping results and corresponding topography information of the two kinds of MAPbI3 film after keeping them under ambient conditions in the dark for 1 month[84]. Copyright 2018, Royal Society of Chemistry
Fig. 21 Dipole alignment of FAL-passivated perovskite films. KPFM images of perovskite film (a) before and after FAL passivation using (b) vacuum-free hot vapor assisted colloidal process and(c) solution process[87]. Copyright 2018, WILEY-VCH
Fig. 22 μ-Photoluminescence mapping of as prepared MAPbI3(a), and after bleaching and recrystallization of MAPbI3 recovered in N2 atmosphere(b), dark color represents photoluminescence intensity average 10 000 counts while the bright color indicates enhanced intensity, average 150 000 counts[81]. Copyright 2016, Royal Society of Chemistry
Fig. 23 (a) PL spectra of PVK film on SnO2 or SnO2/S substrates;(b) TRPL of PVK based on the SnO2 substrate with and without sulfur functionalization;(c) EIS of MAPbI3 PSCs with fitting results under the equivalent circuit model[65]. Copyright 2018, Wiley-VCH
[1]
Jeon N J , Noh J H , Yang W S , Kim Y C , Ryu S , Seo J , Seok S . Nature, 2015, 517: 476.https://www.ncbi.nlm.nih.gov/pubmed/25561177

doi: 10.1038/nature14133 pmid: 25561177
[2]
Zong Y , Zhou Y , Ju M , Garces H F , Krause A R , Ji F , Cui G , Zeng X C , Padture N P , Pang S. Angew. Chem. Int.Ed., 2016, 55: 14723.
[3]
Wehrenfennig C , Eperon G E , Johnston M B , Snaith H J , Herz L M. Adv. Mater., 2014, 26: 1584.https://www.ncbi.nlm.nih.gov/pubmed/24757716

doi: 10.1002/adma.201305172 pmid: 24757716
[4]
Kojima A , Teshima K , Shirai Y , Miyasaka T .[J]. Am. Chem. Soc., 2009, 131: 6050.https://pubs.acs.org/doi/10.1021/ja809598r

doi: 10.1021/ja809598r
[5]
Im J H , Lee C R , Lee J W , Park S W , Park N G . Nanoscale, 2011, 3: 4088.https://www.ncbi.nlm.nih.gov/pubmed/21897986

pmid: 21897986
[6]
Kim H S , Lee C R , Im J H , Lee K B , Moehl T , Marchioro A , Moon S J , Humphry-Baker R , Yum J H , Moser J E , Grätzel M , Park N G. Sci. Rep., 2012, 2: 591.https://www.ncbi.nlm.nih.gov/pubmed/22912919

doi: 10.1038/srep00591 pmid: 22912919
[7]
Lee M M , Teuscher J , Miyasaka T , Murakami T N , Snaith H J . Science, 2012, 338: 643.https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604 pmid: 23042296
[8]
Chung I , Lee B , He J , Chang R P , Kanatzidis M G . Nature, 2012, 485: 486.https://www.ncbi.nlm.nih.gov/pubmed/22622574

doi: 10.1038/nature11067 pmid: 22622574
[9]
NREL Best Research-Cell Efficiency Chart.[2020-05-08].https://www.nrel.gov/pv/cell-efficiency.html
[10]
Park N G. Adv. Energy Mater., 2020, 1903106.
[11]
Yang W S , Park B W , Jung E H , Jeon N J , Kim Y C , Lee D U , Shin S S , Seo J , Kim E K , Noh J H , Seok S . Science, 2017, 356: 167.https://www.ncbi.nlm.nih.gov/pubmed/28360134

pmid: 28360134
[12]
Tress W R. Adv. Energy Mater., 2017, 7: 1602358.http://doi.wiley.com/10.1002/aenm.201602358

doi: 10.1002/aenm.201602358
[13]
Correa-Baena J P , Tress W R , Domanski K , Anaraki E H , Turren-Cruz S H , Roose B , Boix P P , Grätzel M , Saliba M , Abate A , Hagfeldt A . Energy Environ. Sci., 2017, 10: 1207.http://xlink.rsc.org/?DOI=C7EE00421D

doi: 10.1039/C7EE00421D
[14]
Lee J , Chang H T , An T , Ahn S , Shim J , Kim J M. Nat. Commun., 2013, 4: 2461.https://www.ncbi.nlm.nih.gov/pubmed/24025981

doi: 10.1038/ncomms3461 pmid: 24025981
[15]
Wen X , Wu J , Ye M , Gao D , Lin C . Chem.Commun., 2016, 52: 11355.
[16]
Seo J , Park S , Kim Y C , Jeon N J , Noh J H , Yoon S C , Sang S I. Energy Environ. Sci., 2014, 7: 2642.http://xlink.rsc.org/?DOI=C4EE01216J

doi: 10.1039/C4EE01216J
[17]
Heo J H , Han H J , Kim D , Ahn T K , Im S H. Energy Environ. Sci., 2015, 8: 1602.http://xlink.rsc.org/?DOI=C5EE00120J

doi: 10.1039/C5EE00120J
[18]
Kim J H , Williams S T , Cho N , Chueh C C , Jen A K Y. Adv. Energy Mater., 2015, 5: 1401229 http://doi.wiley.com/10.1002/aenm.201401229

doi: 10.1002/aenm.201401229
[19]
Cheng P , Zhan X. Chem. Soc. Rev. 2016, 45: 2544.https://www.ncbi.nlm.nih.gov/pubmed/26890341

doi: 10.1039/c5cs00593k pmid: 26890341
[20]
Saliba M , Matsui T , Domanski K , Seo J Y , Ummadisingu A , Zakeeruddin S M , Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206.https://www.ncbi.nlm.nih.gov/pubmed/27708053

doi: 10.1126/science.aah5557 pmid: 27708053
[21]
Giordano F , Abate A , Correa-Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin N K, Hagfeldt A, Grätzel M. Nat. Commun., 2016, 7: 10379.https://www.ncbi.nlm.nih.gov/pubmed/26758549

doi: 10.1038/ncomms10379 pmid: 26758549
[22]
Zhou H , Chen Q , Li G , Luo S , Song T , Duan H S , Hong Z , You J , Liu Y , Yang Y . Science, 2014, 345: 542.https://www.ncbi.nlm.nih.gov/pubmed/25082698

pmid: 25082698
[23]
Wang J T , Ball J M , Barea E M , Abate A , Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R[J]. Nano Lett., 2014, 14: 724.https://www.ncbi.nlm.nih.gov/pubmed/24341922

doi: 10.1021/nl403997a pmid: 24341922
[24]
You J , Meng L , Song T B , Guo T F , Yang Y M , Chang W H , Hong Z , Chen H , Zhou H , Q Chen, Liu Y, Marco N D, Yang Y. Nat. Nanotechnol., 2016, 11: 75.https://www.ncbi.nlm.nih.gov/pubmed/26457966

doi: 10.1038/nnano.2015.230 pmid: 26457966
[25]
Yu Z , Sun L. Adv. Energy Mater., 2015, 5: 1500213.http://doi.wiley.com/10.1002/aenm.201500213

doi: 10.1002/aenm.201500213
[26]
Anaraki E H , Kermanpur A , Steier L , Domanski K , Matsui T , Tress W F , Saliba M , Abate A , Grätzel M , Hagfeldt A , Correa-Baena J P. Energy Environ. Sci., 2016, 9: 3128.http://xlink.rsc.org/?DOI=C6EE02390H

doi: 10.1039/C6EE02390H
[27]
Correa-Baena J P , Steier L , Tress W F , Saliba M , Neutzner S , Matsui T , Giordano F , Jacobsson T J , Srimath K A R , Zakeeruddin S M , Petrozza A , Abate A , Nazeeruddin M K , Grätzel M , Hagfeldt A . Energy Environ. Sci., 2015, 8: 2928.http://xlink.rsc.org/?DOI=C5EE02608C

doi: 10.1039/C5EE02608C
[28]
Wang C , Zhao D , Grice C R , Liao W , Yu Y , Cimaroli Y , Shrestha Y , Roland P J , Chen J , Yu Z , Liu P , Cheng N , Ellingson R J , Zhao X , Yan Y . J. Mater. Chem. A, 2016, 4: 12080.http://xlink.rsc.org/?DOI=C6TA04503K

doi: 10.1039/C6TA04503K
[29]
Jeon N J , Lee J , Noh J H , Nazeeruddin M K , Grätzel M , Seok S . Am. Chem. Soc., 2013, 135: 19087.https://pubs.acs.org/doi/10.1021/ja410659k

doi: 10.1021/ja410659k
[30]
Wang C , Zhao D , Grice C R , Liao W , Yu Y , Cimaroli A , Shrestha N , Roland P J , Chen J , Yu Z , Liu P , Cheng N , Ellingson R J , Zhao X , Yan Y. Adv. Energy Mater., 2015, 5: 1500038.http://doi.wiley.com/10.1002/aenm.201500038

doi: 10.1002/aenm.201500038
[31]
Ye T , Ma S , Jiang X , Wei L , Vijila C , Ramakrishna S. Adv. Funct. Mater., 2017, 27: 1606545.http://doi.wiley.com/10.1002/adfm.201606545

doi: 10.1002/adfm.201606545
[32]
Meng F , Gao L , Yan Y , Cao J , Wang N , Wang T , Ma T . Carbon, 2019, 145: 290.https://linkinghub.elsevier.com/retrieve/pii/S0008622319300478

doi: 10.1016/j.carbon.2019.01.047
[33]
Meng F , Liu A , Gao L , Cao J , Yan Y , Wang N , Fan M , Wei G , Ma T . J. Mater. Chem. A, 2019, 7: 8690.http://xlink.rsc.org/?DOI=C9TA01364D

doi: 10.1039/C9TA01364D
[34]
Dai X , Zhang Z , Jin Y , Niu Y , Cao H , Liang X , Chen L , Wang J , Peng X . Nature, 2014, 515: 96.https://www.ncbi.nlm.nih.gov/pubmed/25363773

doi: 10.1038/nature13829 pmid: 25363773
[35]
Habisreutinger S N , Leijtens T , Eperon G E , Stranks S D , Nicholas R J , Snaith H J. Nano Lett., 2014, 14: 5561.https://www.ncbi.nlm.nih.gov/pubmed/25226226

doi: 10.1021/nl501982b pmid: 25226226
[36]
Wang Q , Dong Q , Li T , Gruverman A , Huang J . Adv.Mater., 2016, 28: 6734.
[37]
Bi D , Yi C , Luo J , Dcoppet J D , Zhang F , Zakeeruddin S M , Li X , Hagfeldt A , Grätzel M .Nat. Energy, 2016, 1: 16142.https://doi.org/10.1038/nenergy.2016.142

doi: 10.1038/nenergy.2016.142
[38]
Wang F , Endo M , Mouri S , Miyauchi Y , Ohno Y , Wakamiya A , Murata Y , Matsuda K . Nanoscale, 2016, 8: 11882.https://www.ncbi.nlm.nih.gov/pubmed/27232674

doi: 10.1039/c6nr01152g pmid: 27232674
[39]
Jiang P , Jones T W , Duffy N W , Anderson K F , Bennett R , Grigore M , Marvig P , Xiong Y , Liu T , Sheng Y , Hong L , Hou X , Duan M , Hu Y , Rong Y , Wilson G J , Han H . Carbon, 2018, 129: 830.https://linkinghub.elsevier.com/retrieve/pii/S0008622317308849

doi: 10.1016/j.carbon.2017.09.008
[40]
Liu Z , Sun B , Shi T , Tanga Z , Liao G .J. Mater. Chem. A, 2016, 4: 10700.http://xlink.rsc.org/?DOI=C6TA02851A

doi: 10.1039/C6TA02851A
[41]
Zhang N , Guo Y , Yin X , He M , Zou X . Mater.Lett., 2016, 182: 248.
[42]
Wei H , Xiao J , Yang Y , Lv S , Shi J , Xu X , Dong J , Luo Y , Li D , Meng Q . Carbon, 2015. 93: 861.https://linkinghub.elsevier.com/retrieve/pii/S000862231500439X

doi: 10.1016/j.carbon.2015.05.042
[43]
Zhang F , Shi W , Luo J , Pellet N , Yi C , Li X , Zhao X , Dennis T J S, Li X, Wang S, Xiao Y, Zakeeruddin S M, Bi D, Grätzel M. Adv. Mater., 2017, 29: 606806.
[44]
Zhang J , Hultqvist A , Zhang T , Jiang L , Ruan C , Yang L , Cheng Y , Edoff M , Johansson E M[J]. Chem. Sus. Chem., 2017, 10: 3810.http://doi.wiley.com/10.1002/cssc.v10.19

doi: 10.1002/cssc.v10.19
[45]
Koushik D , Verhees W J H, Kuang Y, Veenstra S, Zhang D, Verheijen M A, Creatoreab M, Schroppa R E I. Energy Environ. Sci., 2017, 10: 91.http://xlink.rsc.org/?DOI=C6EE02687G

doi: 10.1039/C6EE02687G
[46]
Wang F , Shimazaki A , Yang F , Kanahashi K , Matsuki K , Miyauchi Y , Takenobu T , Wakamiya A , Murata Y , Matsuda K .J. Phys. Chem. C, 2017, 121: 1562.https://pubs.acs.org/doi/10.1021/acs.jpcc.6b12137

doi: 10.1021/acs.jpcc.6b12137
[47]
Peng J , Wu Y , Ye W , Jacobs D A , Shen H , Fu X , Wan Y , Duong T , Wu N , Barugkin C , Nguyen H T , Zhong D , Li J , Lu T , Liu Y , Lockrey M N , Weber K J , Catchpolea K R , White T P. Energy Environ. Sci., 2017, 10: 1792.http://xlink.rsc.org/?DOI=C7EE01096F

doi: 10.1039/C7EE01096F
[48]
Peng J , Khan J I , Liu W , Ugur E , Duong T , Wu Y , Shen H , Wang K , Dang H , Aydin E , Yang X , Wan Y , Weber K J , Catchpole K R , Laquai F , Wolf S D , White T P. Adv. Energy Mater., 2018, 8: 1801208.http://doi.wiley.com/10.1002/aenm.v8.30

doi: 10.1002/aenm.v8.30
[49]
Zhang H , Shi J , Zhu L , Luo Y , Li D , Wu H , Meng Q . Nano Energy, 2018, 43: 383.https://linkinghub.elsevier.com/retrieve/pii/S2211285517307024

doi: 10.1016/j.nanoen.2017.11.024
[50]
Snaith H J , Abate A , Ball J M , Eperon G E , Leijtens T , Noel N K , Stranks S D , Wang J T , Wojciechowski K , Zhang W .[J]. Phys. Chem. Lett., 2014, 5: 1511.
[51]
Rajagopal A , Yao K , Jen A K Y. Adv. Mater., 2018, 30: 1800455.http://doi.wiley.com/10.1002/adma.201800455

doi: 10.1002/adma.201800455
[52]
Burschka J , Pellet N , Moon S J , Humphry-Baker R , Gao P , Nazeeruddin M K , Grätzel M . Nature, 2013, 499: 316.https://www.ncbi.nlm.nih.gov/pubmed/23842493

doi: 10.1038/nature12340 pmid: 23842493
[53]
Jeon N J , Noh J H , Kim Y C , Yang W S , Ryu S , Seok S . Nat.Mater., 2014, 13: 897.
[54]
Ungera E L , Hokea E T , Bailiea C D , Nguyenc W H , Bowringa A R , Heumüllera T , Christoforod M G , McGehee M D. Energy Environ. Sci., 2014, 7: 3690.http://xlink.rsc.org/?DOI=C4EE02465F

doi: 10.1039/C4EE02465F
[55]
Kim H S , Mora-Sero I , Gonzalez-Pedro V , Fabregat-Santiago F , Juarez-Perez E J, Park N G, Bisquert[J]. Nat. Commun., 2013, 4: 2242.https://www.ncbi.nlm.nih.gov/pubmed/23900067

pmid: 23900067
[56]
Hou Y , Chen W , Baran D , Stubhan T , Luechinger N A , Hartmeier B , Richter M , Min J , Chen S , Quiroz C O , Li N , Zhang H , Heumueller T , Matt G J , Osvet A , Forberich K , Zhang Z G , Li Y , Winter B , Schweizer P , Spiecker E , Brabec C .[J]. Adv. Mater., 2016, 28: 5112.https://www.ncbi.nlm.nih.gov/pubmed/27144875

doi: 10.1002/adma.201504168 pmid: 27144875
[57]
Tress W , Marinova N , Inganäs O , Nazeeruddin M K , Zakeeruddin S M , Grätzel M. Adv. Energy. Mater., 2015, 5: 1400812.http://doi.wiley.com/10.1002/aenm.201400812

doi: 10.1002/aenm.201400812
[58]
Heo J H , Im S H , Noh J H , Mandal T N , Lim C S , Chang J A , Lee Y H , Kim H J , Sarkar A , Nazeeruddin M K , Grätzel M , Seok S .Nat. Photonics, 2013, 7: 486.https://doi.org/10.1038/nphoton.2013.80

doi: 10.1038/nphoton.2013.80
[59]
Im J H , Jang I H , Pellet N , Grätzel M , Park N G. Nat. Nanotechnol., 2014, 9: 927.https://www.ncbi.nlm.nih.gov/pubmed/25173829

doi: 10.1038/nnano.2014.181 pmid: 25173829
[60]
Ahn N , Son D Y , Jang I H , Kang S M , Choi M , Park N G .J. Mater. Chem. A, 2015, 137: 8696.
[61]
Zhang H , Xiao J , Shi J , Su H , Luo Y , Li D , Wu H , Cheng Y , Meng Q. Adv. Funct. Mater., 2018, 28: 1802985.http://doi.wiley.com/10.1002/adfm.v28.39

doi: 10.1002/adfm.v28.39
[62]
Wu Z , Liu Z , Hu Z , Hawash Z , Qiu L , Jiang Y , Ono L K , Qi Y . Adv.Mater., 2019, 31: 1804284.
[63]
Yuan S , Wang J , Yang K , Wang P , Zhang X , Zhan Y , Zheng L . Nanoscale, 2018, 10: 18909.https://www.ncbi.nlm.nih.gov/pubmed/30283942

pmid: 30283942
[64]
Wang P , Wang J , Zhang X , Wang H , Cui X , Yuan S , Lua H , Tua L , Zhan Y , Zheng L .J. Mater. Chem. A, 2018, 6: 15853.http://xlink.rsc.org/?DOI=C8TA05593A

doi: 10.1039/C8TA05593A
[65]
Wang Z , Kamarudin M A , Huey N C , Yang F , Pandey M , Kapil G , Ma T , Hayase S . ChemSusChem, 2018, 11: 3941.https://www.ncbi.nlm.nih.gov/pubmed/30225914

doi: 10.1002/cssc.201801888 pmid: 30225914
[66]
Huang P , Chen Q , Zhang K , Yuan L , Zhou Y , Song B , Li Y .J. Mater. Chem. A, 2019, 7: 6213.http://xlink.rsc.org/?DOI=C8TA11841H

doi: 10.1039/C8TA11841H
[67]
Yang G , Wang C , Lei H , Zheng X , Qin P , Xiong L , Zhao X , Yan Y , Fang G .J. Mater. Chem. A, 2017, 5: 1658.http://xlink.rsc.org/?DOI=C6TA08783C

doi: 10.1039/C6TA08783C
[68]
Hou M , Zhang H , Wang Z , Xia Y , Chen Y , Huang W. ACS Appl .Mater. Interfaces, 2018, 10: 30607.https://pubs.acs.org/doi/10.1021/acsami.8b10332

doi: 10.1021/acsami.8b10332
[69]
Liu C , Cai M , Yang Y , Arain Z , Ding Y , Shi X , Shi P , Ma S , Hayat T , Alsaedi A , Wu J , Dai S , Cao G .J. Mater. Chem. A, 2019, 7: 11086.http://xlink.rsc.org/?DOI=C9TA02094B

doi: 10.1039/C9TA02094B
[70]
Seo S , Jeon I , Xiang R , Lee C , Zhang H , Tanaka T , Lee J W , Suh D , Ogamoto T , Nishikubo R , Saeki A , Chiashi S , Shiomi J , Kataura H , Lee H M , Yang Y , Matsuo Y , Maruyama S .J. Mater. Chem. A, 2019, 7: 12987.http://xlink.rsc.org/?DOI=C9TA02629K

doi: 10.1039/C9TA02629K
[71]
Xue Q , Bai Y , Liu M , Xia R , Hu Z , Chen Z , Jiang X , Huang F , Yang S , Matsuo Y , Yip H , Cao Y. Adv. Energy Mater., 2017, 7: 1602333.http://doi.wiley.com/10.1002/aenm.201602333

doi: 10.1002/aenm.201602333
[72]
Cao J , Liu Y , Jing X , Yin J , Li J , Xu B , Tan Y , Zheng N .[J]. Am. Chem. Soc., 2015, 137: 10914.https://pubs.acs.org/doi/10.1021/jacs.5b06493

doi: 10.1021/jacs.5b06493
[73]
Wen X , Wu J , Gao D , Lin C .J. Mater. Chem A, 2016, 4: 13482.http://xlink.rsc.org/?DOI=C6TA04616A

doi: 10.1039/C6TA04616A
[74]
Xiao J , Shi J , Liu H , Xu Y , Lv S , Luo Y , Li D , Meng Q , Li Y. Adv. Energy Mater., 2015, 5: 1401943.http://doi.wiley.com/10.1002/aenm.201401943

doi: 10.1002/aenm.201401943
[75]
Li H , Zhang R , Li Y , Li Y , Liu H , Shi J , Zhang H , Wu H , Luo Y , Li D , Li Y , Meng Q. Adv. Energy Mater., 2018, 8, 1802012.http://doi.wiley.com/10.1002/aenm.v8.30

doi: 10.1002/aenm.v8.30
[76]
Zhang X , Wang Q , Jin Z , Chen Y , Liu H , Wang J , Li Y , Liu S . Adv. Mater. Interfaces, 2018, 5: 1701117.http://doi.wiley.com/10.1002/admi.201701117

doi: 10.1002/admi.201701117
[77]
Li H , Shi W , Huang W , Yao E , Han J , Chen Z , Liu S , Shen Y , Wang M , Yang Y . NanoLett., 2017, 17: 2328.https://pubs.acs.org/doi/10.1021/acs.nanolett.6b05177

doi: 10.1021/acs.nanolett.6b05177
[78]
Ardakani, Gholipour S , Marinova N, Delgado J L, Turren-Cruz S H, Domanski K, Taghavinia N, Saliba M, Grätzel M, Hagfeldt A, Tress W G. Adv. Energy Mater., 2018, 8: 1702719.http://doi.wiley.com/10.1002/aenm.v8.12

doi: 10.1002/aenm.v8.12
[79]
Liu Z , Lau S P , Yan F . Chem. Soc. Rev, 2015, 44: 5638.https://www.ncbi.nlm.nih.gov/pubmed/26024242

doi: 10.1039/c4cs00455h pmid: 26024242
[80]
Lee J K , Kim H S , Park N G. Acc. Chem. Res, 2016, 49: 311.https://www.ncbi.nlm.nih.gov/pubmed/26797391

doi: 10.1021/acs.accounts.5b00440 pmid: 26797391
[81]
Jain S M , Qiu Z , Häggman Z , Mirmohades M , Johansson M B , Edvinsson T , Boschloo G. .Energy Environ. Sci., 2016, 9: 3770.http://xlink.rsc.org/?DOI=C6EE02544G

doi: 10.1039/C6EE02544G
[82]
Noel N K , Abate A , Stranks S D , Parrott E S , Burlakov V M , Goriely A , Snaith H J . ACS Nano, 2014, 8: 9815.https://www.ncbi.nlm.nih.gov/pubmed/25171692

pmid: 25171692
[83]
Abate A , Saliba M , Hollman D J , Stranks S D , Wojciechowski K , Avolio R , Grancini G , Petrozza A , Snaith H J. Nano Lett., 2014, 14: 3247.https://www.ncbi.nlm.nih.gov/pubmed/24787646

pmid: 24787646
[84]
Zhu H , Huang B , Wu S , Xiong Z , Li J , Chen W . J. Mater. Chem. A, 2018, 6: 6255.http://xlink.rsc.org/?DOI=C8TA00267C

doi: 10.1039/C8TA00267C
[85]
Lian X , Chen J , Zhang Y , Tian S , Qin M , Li J , Andersen T R , Wu G , Lu X , Chen H .J. Mater. Chem. A, 2019, 7: 18980.http://xlink.rsc.org/?DOI=C9TA04658E

doi: 10.1039/C9TA04658E
[86]
Wang Y , Zhang T , Kan M , Li Y , Wang T , Zhao Y . Joule, 2018, 2: 2065.https://linkinghub.elsevier.com/retrieve/pii/S2542435118302782

doi: 10.1016/j.joule.2018.06.013
[87]
Zhao S , Xie J , Cheng G , Xiang Y , Zhu H , Guo W , Wang H , Qin M , Lu X , Qu J , Wang J , Xu J , Yan K . Small, 2018, 14: 1803350.https://onlinelibrary.wiley.com/toc/16136829/14/50

doi: 10.1002/smll.v14.50
[88]
Wang Y , Zhang T , Kan M , Zhao Y .[J]. Am. Chem. Soc., 2018, 140: 12345.https://pubs.acs.org/doi/10.1021/jacs.8b07927

doi: 10.1021/jacs.8b07927
[89]
Zhuang J , Wei Y , Luan Y , Chen N , Mao P , Cao S , Wang J . Nanoscale, 2019, 11: 14553.https://www.ncbi.nlm.nih.gov/pubmed/31342051

doi: 10.1039/c9nr03638e pmid: 31342051
[90]
Huang C , Lin P , Fu N , Liu C , Xu B , Sun K , Wang D , Zenga X , Ke S . Chem.Commun, 2019, 55: 2777.
[91]
Wang S , Zhu Y , Wang C , Ma Z .J. Mater. Chem. A, 2019, 7: 11867.http://xlink.rsc.org/?DOI=C9TA02631B

doi: 10.1039/C9TA02631B
[92]
Shen D , Pang A , Li Y , Dou J , Wei M . Chem.Commun., 2018, 54: 1253.
[93]
Fang R , Wu S , Chen W , Liu Z , Zhang S , Chen R , Yue Y , Deng L , Cheng Y , Han L , Chen W . ACS Nano, 2018, 12: 2403.https://www.ncbi.nlm.nih.gov/pubmed/29481056

pmid: 29481056
[94]
Dou Y , Wang, Li, Liao Y, Sun W, Wu J, Lan Z. ACS Appl. Mater. Interfaces, 2019, 11: 32159.https://www.ncbi.nlm.nih.gov/pubmed/31403271

pmid: 31403271
[95]
Shin D , Kang D , Lee J B , Ahn J H , Cho I W , Ryu M Y , Cho S W , Jung N E , Lee H , Yi Y. ACS Appl. Mater. Interfaces., 2019, 11: 17028.https://www.ncbi.nlm.nih.gov/pubmed/30990013

pmid: 30990013
[96]
Yang I S , Lee S , Choi J , Jung M T , Kim J , Lee W I .J. Mater. Chem. A, 2019, 7: 6028.http://xlink.rsc.org/?DOI=C8TA12217B

doi: 10.1039/C8TA12217B
[97]
Subhani S W , Wang K , Du M , Wang X , Liu S. Adv. Energy Mater., 2019, 9: 1803785.https://onlinelibrary.wiley.com/toc/16146840/9/21

doi: 10.1002/aenm.v9.21
[98]
Liu Z , Li S , Wang X , Cui Y , Qin Y , Leng S , Xu Y , Yao K , Huang H . Nano Energy, 2019, 62: 734.https://linkinghub.elsevier.com/retrieve/pii/S2211285519304781

doi: 10.1016/j.nanoen.2019.05.072
[99]
Zhao Z , You S , Huang J , Yuan L , Xiao Z , Cao Y , Cheng N , Hu L , Liua J , Yu B .J. Mater. Chem. C, 2019, 7: 9735.http://xlink.rsc.org/?DOI=C9TC03259B

doi: 10.1039/C9TC03259B
[100]
Zou M , Xia X , Jiang Y , Peng J , Jia Z , Wang X , Li F . ACS Appl. Mater. Interfaces, 2019, 11: 33515.https://www.ncbi.nlm.nih.gov/pubmed/31423760

doi: 10.1021/acsami.9b12961 pmid: 31423760
[1] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[2] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[3] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[4] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[5] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[6] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[7] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.