中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 714-722 DOI: 10.7536/PC180929 Previous Articles   Next Articles

Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells

Xueyan Shan1,2, Shimao Wang1,3, Gang Meng1,3, Xiaodong Fang1,2,3,**()   

  1. 1. Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
    2. University of Science and Technology of China, Hefei 230026, China
    3. Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China
  • Received: Online: Published:
  • Contact: Xiaodong Fang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(11674324); National Natural Science Foundation of China(11604339); “100 Talents Project” of Chinese Academy of Sciences
Richhtml ( 23 ) PDF ( 703 ) Cited
Export

EndNote

Ris

BibTeX

Perovskite solar cells (PSCs) has been developing rapidly at an unprecedented speed in the field of photovoltaics since 2009 and its certified record power conversion efficiency has exceeded 23%. Interface engineering is one of the most effective approaches for improving the performance of PSCs. This paper reviews the main progress in the interface engineering of electron transport layer/light absorption layer of PSCs. The related investigations have been classified into three categories, improving the quality of perovskite film, improving the energy level matching between the electron transport layer and the perovskite layer, and improving the stability of the solar cells, according to their effects. Finally, the prospect of improving the performance of PSCs through the interface engineering is prospected.

Fig. 1 Top view SEM images of the perovskite thin films modified with and without Pb(Ac)2·3H2O respectively[21]. Copyright 2016, RSC
Fig. 2 A schematic diagram of the effect of 3-aminopropanioc acid on the modification of ZnO/CH3NH3PbI3 interface[23]. Copyright 2015, ACS
Fig. 3 Contact angle measurements of water on TiO2 surfaces without, with TiCl4 treatment and UV(O3) treatment[25]. Copyright 2015, CSJ
Fig. 4 (a) XRD patterns of perovskite layers without and with different PCBM intermediate layers(0, 10, 20, 30 and 40 mg·mL-1);(b) the FWHM of the(110) diffraction peaks[30]. Copyright 2017, RSC
Fig. 5 Energy-level diagrams of the ITO, ZnO, ZnO/PCBM, and CH3NH3PbI3[38]. Copyright 2014, RSC
Fig. 6 Schematic energy diagram of FTO/ETLs/CH3NH3PbI3/spiro-OMeTAD/Au device[41]. Copyright 2016, RSC
Fig. 7 The energy level diagram of the FTO/TiO2(ionic liquid)/CH3NH3PbICl2/PTAA/Au PSCs[45]. Copyright 2016, RSC
Fig. 8 a) Schematic diagram of PSCs structure; b)The energy level diagram of the TiO2/ZnS/FASnI3/PTAA/Au and crystal structure of the FASn3[49], Copyright 2016, ACS
Fig. 9 (a) An overview;(b) the corresponding high-resolution XPS O 1s spectra of mp-TiO2 with and without MgO coating[57]. Copyright 2015, Wiley
[1]
Gao P, Grätzel M, Nazeeruddin M K . Energy Environ. Sci., 2014,7:2448.
[2]
Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I . Energy Environ. Sci., 2014,7:2642.
[3]
Heo J H, Song D H, Han H J, Kim S Y, Kim J H, Kim D, Shin H W, Ahn T K, Wolf C, Lee T W, Im S H . Adv. Mater., 2015,27:3424. https://www.ncbi.nlm.nih.gov/pubmed/25914242

doi: 10.1002/adma.201500048 pmid: 25914242
[4]
Chen Y, Li B B, Huang W, Gao D Q, Liang Z Q . Chem. Commun., 2015,51:11997. https://www.ncbi.nlm.nih.gov/pubmed/26120826

doi: 10.1039/c5cc03615a pmid: 26120826
[5]
Yang T Y, Gregori G, Pellet N, Grätzel M, Maier J . Angew. Chem. Int. Ed., 2015,54:7905. https://www.ncbi.nlm.nih.gov/pubmed/25980541

doi: 10.1002/anie.201500014 pmid: 25980541
[6]
Kojima A, Teshima K, Shirai Y, Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

doi: 10.1021/ja809598r pmid: 19366264
[7]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G . Sci. Rep., 2012,2:591. https://www.ncbi.nlm.nih.gov/pubmed/22912919

doi: 10.1038/srep00591 pmid: 22912919
[8]
https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg[2018-09-18]. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg
[9]
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J . Nat. Energy, 2018,3:682.
[10]
Loi M A, Hummelen J C . Nat. Mater., 2013,12:1087.
[11]
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y . Science, 2014,345:542. https://www.ncbi.nlm.nih.gov/pubmed/25082698

doi: 10.1126/science.1254050 pmid: 25082698
[12]
Bi D Q, Yang L, Boschloo G, Hagfeldt A, Johansson E M J . J. Phys. Chem. Lett., 2013,4:1532. https://www.ncbi.nlm.nih.gov/pubmed/26282310

doi: 10.1021/jz400638x pmid: 26282310
[13]
Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M . Nature, 2013,499:316. https://www.ncbi.nlm.nih.gov/pubmed/23842493

doi: 10.1038/nature12340 pmid: 23842493
[14]
Liu M Z, Michael B, Snaith H J . Nature, 2013,501:395. https://www.ncbi.nlm.nih.gov/pubmed/24025775

doi: 10.1038/nature12509 pmid: 24025775
[15]
Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y . J. Am. Chem. Soc., 2014,136:622. https://www.ncbi.nlm.nih.gov/pubmed/24359486

doi: 10.1021/ja411509g pmid: 24359486
[16]
Ball J M, Lee M M, Hey A, Snaith H J . Energy Environ. Sci., 2013,6:1739.
[17]
Dualeh A, Moehl T, Tétreault, N, Teuscher J, Nazeeruddin M K, Grätzel M . ACS Nano, 2013,8:362. https://www.ncbi.nlm.nih.gov/pubmed/24341597

doi: 10.1021/nn404323g pmid: 24341597
[18]
Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M . Adv. Funct. Mater., 2014,24:3250.
[19]
Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A . Energy Environ. Sci., 2014,7:1377.
[20]
Congreve D N, Lee J, Thompson N J, Hontz E, Yost S R, Reusswig P D, Bahlke M E, Reineke S, Voorhis T V, Baldo M A . Science, 2013,340:334. https://www.ncbi.nlm.nih.gov/pubmed/23599489

doi: 10.1126/science.1232994 pmid: 23599489
[21]
Liang X Y, Li W Z, Li J W, Niu G D, Wang L D . J. Mater. Chem. A, 2016,4:16913.
[22]
Dong Y, Li W, Zhang X J, Xu Q, Liu Q, Li C H, Bo Z S . Small, 2016,8:1098.
[23]
Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z . J. Am. Chem. Soc., 2015,137:2674. https://www.ncbi.nlm.nih.gov/pubmed/25650811

doi: 10.1021/ja512518r pmid: 25650811
[24]
Yang G, Wang C L, Lei H W, Zheng X L, Qin P L, Xiong L B, Zhao X Z, Yan Y F, Fang G J . J. Mater. Chem. A, 2017,5:1658
[25]
Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H . Chem. Lett., 2015,44:674.
[26]
Zhu L Z, Shao Z P, Ye J J, Zhang X H, Pan X, Dai S Y . Chem. Commun., 2016,52:970.
[27]
Zhu L Z, Ye J J, Zhang X H, Zheng H Y, Liu G Z, Pan X, Dai S Y . J. Mater. Chem. A, 2017,5:3675.
[28]
Shin S S, Yeom E J, Yang W S, Hur S, Kim M G, Im J, Seo J, Noh J H, Seok S . Science, 2017,356:167. https://www.ncbi.nlm.nih.gov/pubmed/28360134

doi: 10.1126/science.aam6620 pmid: 28360134
[29]
Hou Y R, Yang J Y, Jiang Q H, Li W X, Zhou Z W, Li X, Zhou S Q . Sol. Energ. Mat., Sol. C, 2016,155:101. https://linkinghub.elsevier.com/retrieve/pii/S092702481630099X

doi: 10.1016/j.solmat.2016.05.004
[30]
Li H C, Xue Y B, Zheng B, Tian J Q, Wang H Y, Gao C X, Liu X Z . RSC Adv., 2017,7:30422.
[31]
Cho A N, Park N G . ChemSusChem, 2017,10:3687. https://www.ncbi.nlm.nih.gov/pubmed/28736950

doi: 10.1002/cssc.201701095 pmid: 28736950
[32]
Jacobs D A, Wu Y, Shen H, Barugkin C, Beck F J, White T P, Weber K, Catchpole K R . Phys. Chem. Chem. Phys., 2017,19:3094. https://www.ncbi.nlm.nih.gov/pubmed/28079207

doi: 10.1039/c6cp06989d pmid: 28079207
[33]
Chen B, Yang M, Priya S, Zhu K . J. Phys. Chem. Lett., 2016,7:905. https://www.ncbi.nlm.nih.gov/pubmed/26886052

doi: 10.1021/acs.jpclett.6b00215 pmid: 26886052
[34]
Richardson G, O’Kane S E, Niemann R G, Peltola T A, Foster J M, Cameron P J, Walker A B . Energy Environ. Sci., 2016,9:1476.
[35]
Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Jen A K, Snaith H J . ACS Nano, 2014,8:12701. https://www.ncbi.nlm.nih.gov/pubmed/25415931

doi: 10.1021/nn505723h pmid: 25415931
[36]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J . Science, 2012,338:643. https://www.ncbi.nlm.nih.gov/pubmed/23042296

doi: 10.1126/science.1228604 pmid: 23042296
[37]
Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S . Energy Environ. Sci., 2014,7:2614.
[38]
Kim J, Kim G, Kim T K, Kwon S, Back H, Lee J, Lee S H, Kang H, Lee K . J. Mater. Chem. A, 2014,2:17291.
[39]
Li Y W, Zhao Y, Chen Q, Yang Y, Liu Y S, Hong Z R, Liu Z H, Hsieh Y T, Meng L, Li Y F, Yang Y . J. Am. Chem. Soc., 2015,137:15540. https://www.ncbi.nlm.nih.gov/pubmed/26592525

doi: 10.1021/jacs.5b10614 pmid: 26592525
[40]
Marin-Beloqui J M, Lanzetta L, Palomares E . Chem. Mater., 2016,28:207.
[41]
Shaikh S F, Kwon H C, Yang W, Hwang H, Lee H, Lee E, Ma S, Moon J . J. Mater.Chem. A, 2016,4:15478.
[42]
Han G S, Chung H S, Kim B J, Kim D H, Lee J W, Swain B S, Mahmood K, Yoo J S, Park N G, Lee J H, Jung H S . J. Mater. Chem. A, 2015,3:9160.
[43]
Abayev I, Zaban A, Fabregat-Santiago F, Bisquert J . Phys. Stat. Sol., 2003,196:4.
[44]
Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q . ACS Nano, 2014,8:10161. https://www.ncbi.nlm.nih.gov/pubmed/25259736

doi: 10.1021/nn5029828 pmid: 25259736
[45]
Yang D, Zhou X, Yang R, Yu W, Wang X, Li C, Liu S, Chang R P H . Energy Environ. Sci., 2016,9:3071. http://xlink.rsc.org/?DOI=C6EE02139E

doi: 10.1039/C6EE02139E
[46]
Wu Q L, Zhou W R, Liu Q, Zhou P C, Chen T, Lu Y, Qiao Q Q, Yang S F . ACS Appl., Mater. Interfaces, 2016,8:34464. https://www.ncbi.nlm.nih.gov/pubmed/27998137

doi: 10.1021/acsami.6b12683 pmid: 27998137
[47]
Li W Z, Zhang W, Reenen S V, Sutton R J, Fan J D, Haghighirad A A, Johnston M B, Wang L D, Snaith H J . Energy Environ. Sci., 2016,9:490.
[48]
Han F, Luo J S, Zhao B W, Wan Z Q, Wang R L, Jia C Y . Electrochim. Acta, 2017,236:122.
[49]
Ke W, Stoumpos C C, Logsdon J L, Wasielewski M R, Yan Y F, Fang G J, Kanatzidis M G . J. Am. Chem. Soc., 2016,138:14998. https://www.ncbi.nlm.nih.gov/pubmed/27776416

doi: 10.1021/jacs.6b08790 pmid: 27776416
[50]
Noh J H, Im S H, Heo J H, Mandal T N, Seok S . Nano Lett., 2013,13:1764. https://www.ncbi.nlm.nih.gov/pubmed/23517331

doi: 10.1021/nl400349b pmid: 23517331
[51]
Niu G, Li W Z, Meng F, Wang L D, Dong H P, Qiu Y . J. Mater. Chem. A, 2014,2:705.
[52]
Niu G D, Guo X D, Wang L D . J. Mater. Chem. A, 2015,3:8970.
[53]
Zheng L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F Q, Bo Q, Gong Q H . Chem. Commun., 2014,50:11196. https://www.ncbi.nlm.nih.gov/pubmed/25111693

doi: 10.1039/c4cc04680c pmid: 25111693
[54]
Leijtens T, Giovenzana T, Habisreutinger S N, Tinkham J S, Noel N K, Kamino B A, Sadoughi G, Sellinger A, Snaith H J . ACS Appl., Mater. Interfaces, 2016,8:5981. https://www.ncbi.nlm.nih.gov/pubmed/26859777

doi: 10.1021/acsami.5b10093 pmid: 26859777
[55]
Kwon Y S, Lim J C, Yun H J, Kim Y H, Park T . Energy Environ. Sci., 2014,7:1454.
[56]
Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W . Science, 2014,345:295. https://www.ncbi.nlm.nih.gov/pubmed/25035487

doi: 10.1126/science.1254763 pmid: 25035487
[57]
Guo X D, Dong H P, Li W Z, Li N, Wang L D . ChemPhysChem, 2015,16:1727. https://www.ncbi.nlm.nih.gov/pubmed/25851999

doi: 10.1002/cphc.201500163 pmid: 25851999
[58]
Wang Q, Dong Q F, Li T, Gruverman A, Huang J S . Adv. Mater., 2016,28:6734. https://www.ncbi.nlm.nih.gov/pubmed/27184864

doi: 10.1002/adma.201600969 pmid: 27184864
[59]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S . Nat. Commun., 2016,7:12806. https://www.ncbi.nlm.nih.gov/pubmed/27703136

doi: 10.1038/ncomms12806 pmid: 27703136
[60]
Fujishima A, Rao T N, Tryk D A . J. Photochem. Photobiol. C, 2000,1:1.
[61]
Li W Z, Li J W, Niu G D, Wang L D . J. Mater. Chem. A, 2016,4:11688. http://xlink.rsc.org/?DOI=C5TA09165A

doi: 10.1039/C5TA09165A
[62]
Ito S, Tanaka S, Manabe K, Nishino H . J. Phys. Chem. C, 2014,118:16995.
[63]
Park N, Grätzel M, Miyasaka T, Zhu K, Emery K . Nat. Energy, 2016,1:16152.
[64]
Singh T, Singh J, Miyasaka T . ChemSusChem, 2016,9:2559. https://www.ncbi.nlm.nih.gov/pubmed/27554065

doi: 10.1002/cssc.201601004 pmid: 27554065
[65]
Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M . Nat. Commun., 2016,7:13422. https://www.ncbi.nlm.nih.gov/pubmed/27830709

doi: 10.1038/ncomms13422 pmid: 27830709
[66]
You S, Wang H, Bi S, Zhou J, Qin L, Qiu X, Zhao Z, Xu Y, Zhang Y, Shi X, Zhou H, Tang Z . Adv. Mater., 2018,1706924.
[67]
Peneg J, Wu Y, Ye W, Jacobs D A, Shen H, Fu X, Wan Y, Duong T, Wu N, Barugkin C, Nguyen H T, Zhong D, Li J, Lu T, Liu Y, Lockrey M N, Weber K J, Catchpole K R, White T P . Energy Environ. Sci., 2017,10:1792.
[68]
Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zaho Y, Lu Z H, Yang Z, Hoogland S, Sargent E H . Science, 2017,355:722. https://www.ncbi.nlm.nih.gov/pubmed/28154242

doi: 10.1126/science.aai9081 pmid: 28154242
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[14] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[15] Qiaoxia Lin, Meng Yin, Yan Wei, Jingjing Du, Weiyi Chen, Di Huang. The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys [J]. Progress in Chemistry, 2020, 32(4): 406-416.