中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (4): 400-411 DOI: 10.7536/PC161213 Previous Articles   Next Articles

• Review •

Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells

Jianxi Kang1,2,3, Shirong Wang1,2,3, Mengna Sun1,2,3, Hongli Liu1,2,3, Xianggao Li1,2,3*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China;
    3. Tianjin Engineering Center of Functional Fine Chemicals, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21676188) and the Natural Science Foundation of Tianjin (No.16JCZDJC37100).
PDF ( 532 ) Cited
Export

EndNote

Ris

BibTeX

Bulk heterojunction polymer solar cells have become one of the research hotspots in the field of photovoltaic technology due to their low production cost, light weight, simple preparation process, good flexibility and so on. Bulk heterojunction polymer solar cells have achieved energy conversion efficiency of more than 11%. The bulk heterojunction layer is the key point of the bulk heterojunction polymer solar cells and its micro-morphology has an influence on the energy conversion efficiency by affecting the open-circuit voltage, fill factor and short-circuit current of the bulk heterojunction polymer solar cells. So how to effectively control the micro-morphology of the bulk heterojunction is one of the key issues for improving the energy conversion efficiency of bulk heterojunction polymer solar cells. In this paper, the formation process of bulk heterojunction is introduced, and the micro-morphology control methods of bulk heterojunction developed in recent years are systematically summarized and discussed to provide guidance and reference for the preparation of the bulk heterojunction polymer solar cells.

Contents
1 Introduction
2 The formation process of organic bulk heterojunction
3 Regulation for micro-morphology of bulk heterojunction
3.1 Regulation for micro-morphology of bulk heterojunction by solvent-induced
3.2 Regulation for micro-morphology of bulk heterojunction by thermal annealing
3.3 Regulation for micro-morphology of bulk heterojunction by the ratio of donor and acceptor
4 Conclusion

CLC Number: 

[1] Kallmann H, Pope M. J. Chem. Phys., 1959, 30(2): 585.
[2] Tang C W. Appl. Phys. Lett., 1986, 48(2): 183.
[3] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789.
[4] Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Nature, 1995, 376(6540): 498.
[5] Yu G, Heeger A J. J. Appl. Phys., 1995, 78 (7): 4510.
[6] Shaheen S E, Brabec C J, Sariciftci N S, Padinger F, Fromherz T, Hummelen J C. Appl. Phys. Lett., 2001, 78(6): 841.
[7] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nat. Photon., 2009, 3(5): 297.
[8] Padinger F, Rittberger R S, Sariciftci N S. Adv. Funct. Mater., 2003, 13(1): 85.
[9] Dittmer J J, Marseglia E A, Friend R H. Adv. Mater., 2000, 12(17): 1270.
[10] Liu J, Chen L, Gao B, Cao X, Han Y, Xie Z, Wang L. J. Mater. Chem. A, 2013, 1(20): 6216.
[11] Bull T A, Pingree L S C, Jenekhe S A, Ginger D S, Luscombe C K. ACS Nano, 2009, 3(3): 627.
[12] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Nat. Mater., 2007, 6(7): 497.
[13] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C, Heeger A J. J. Am. Chem. Soc., 2008, 130(11): 3619.
[14] Silvestri F, Irwin M D, Beverina L, Facchetti A, Pagani G A, Marks T J. J. Am. Chem. Soc., 2008, 130(52): 17640.
[15] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J. Am. Chem. Soc., 2015, 137(11): 3886.
[16] Van Pruissen G W P, Gholamrezaie F, Wienk M M, Janssen R A J. J. Mater. Chem., 2012, 22(38): 20387.
[17] Dou L, Gao J, Richard E, You J, Chen C C, Cha K C, He Y, Li G, Yang Y. J. Am. Chem. Soc., 2012, 134(24): 10071.
[18] Marsh R A, Hodgkiss J M, Albert-Seifried S, Friend R H. Nano Lett., 2010, 10(3): 923.
[19] Moulé A J, Meerholz K. Adv. Mater., 2008, 20(2): 240.
[20] Chen D, Nakahara A, Wei D, Nordlund D, Russell T P. Nano Lett., 2011, 11(2): 561.
[21] Yao Y, Hou J, Xu Z, Li G, Yang Y. Adv. Funct. Mater., 2008, 18(12): 1783.
[22] Brabec C, Dyakonov V, Scherf U. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH, 2008.
[23] Kim K, Liu J, Namboothiry M A G, Carroll D L. Appl. Phys. Lett., 2007, 90(16): 163511.
[24] Dang M T, Wantz G, Bejbouji H, Urien M, Dautel O J, Vignau L, Hirsch L. Sol. Energy Mater. Sol. Cells, 2011, 95(12): 3408.
[25] Kumar V, Wang H, Rodenburg C. Org. Electron., 2014, 15(9): 2059.
[26] Zhu E, Luo G, Liu Y, Yu J, Zhang F, Che G, Wu H, Tang W. J. Mater. Chem. C, 2015, 3(7): 1595.
[27] Rispens M T, Meetsma A, Rittberger R, Brabec C J, Sariciftci N S, Hummelen J C. Chem. Commun., 2003, (17): 2116.
[28] Wienk M M, Kroon J M, Verhees W J H, Knol J, Hummelen J C, van Hal P A, Janssen R A J. Angew. Chem., 2003, 115(29): 3493.
[29] Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci N S. Adv. Funct. Mater., 2004, 14(10): 1005.
[30] Fang G, Liu J, Fu Y, Meng B, Zhang B, Xie Z, Wang L. Org. Electron., 2012, 13(11): 2733.
[31] Yang S, Zhang Y, Jiang T, Sun X, Lu C, Li G, Li X, Fu G. Chin. Sci. Bull., 2013, 59(3): 297.
[32] Park S H, Roy A, Beaupré S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nature Photonics, 2009, 3(5): 297.
[33] Ruderer M A, Guo S, Meier R, Chiang H Y, Körstgens V, Wiedersich J, Perlich J, Roth S V, Müller-Buschbaum P. Adv. Funct. Mater., 2011, 21(17): 3382.
[34] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D, Nelson J. Nat. Mater., 2008, 7(2): 158.
[35] Diethert A, Peykova Y, Willenbacher N, Müller-Buschbaum P. ACS Appl. Mater. Interfaces, 2010, 2(7): 2060.
[36] Huo L, Liu T, Sun X, Cai Y, Heeger A J, Sun Y. Adv. Mater., 2015, 27(18): 2938.
[37] Guo X, Zhou N, Lou S J, Smith J, Tice D B, Hennek J W, Ortiz R P, Navarrete J T L, Li S, Strzalka J, Chen L X, Chang R P H, Facchetti A, Marks T J. Nature Photonics, 2013, 7(10): 825.
[38] Wienk M M, Turbiez M, Gilot J, Janssen R A J. Adv. Mater., 2008, 20(13): 2556.
[39] Liu F, Gu Y, Wang C, Zhao W, Chen D, Briseno A L, Russell T P. Adv. Mater., 2012, 24(29): 3947.
[40] Zhang F, Jespersen K G, Björström C, Svensson M, Andersson M R, Sundström V, Magnusson K, Moons E, Yartsev A, Inganãs O. Adv. Funct. Mater., 2006, 16(5): 667.
[41] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nature Energy, 2016, 1: 15027.
[42] Etzold F, Howard I A, Forler N, Cho D M, Meister M, Mangold H, Shu J, Hansen M R, Mullen K, Laquai F. J. Am. Chem. Soc., 2012, 134(25): 10569.
[43] Su M S, Kuo C Y, Yuan M C, Jeng U S, Su C J, Wei K H. Adv. Mater., 2011, 23(29): 3315.
[44] Rogers J T, Schmidt K, Toney M F, Kramer E J, Bazan G C. Adv. Mater., 2011, 23(20): 2284.
[45] Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E J. J. Am. Chem. Soc., 2012, 134(6): 2884.
[46] Liang Y, Xu Z, Xia J, Tsai S T, Wu Y, Li G, Ray C, Yu L. Adv. Mater., 2010, 22(20): E135.
[47] Lou S J, Szarko J M, Xu T, Yu L, Marks T J, Chen L X. J. Am. Chem. Soc., 2011, 133(51): 20661.
[48] Collins B A, Li Z, Tumbleston J R, Gann E, McNeill C R, Ade H. Adv. Energy Mater., 2013, 3(1): 65.
[49] Hammond M R, Kline R J, Herzing A A, Richter L J, Germack D S, Ro H W, Soles C L, Fischer D A, Xu T, Yu L, Toney M F, DeLongchamp D M. ACS Nano, 2011, 5(10): 8248.
[50] Zhao G, He Y, Li Y. Adv. Mater., 2010, 22(39): 4355.
[51] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10): 1636.
[52] Chen Y C, Yu C Y, Fan Y L, Hung L I, Chen C P, Ting C. Chem. Commun. (Camb.), 2010, 46(35): 6503.
[53] Jo J, Na S I, Kim S S, Lee T W, Chung Y, Kang S J, Vak D, Kim D Y. Adv. Funct. Mater., 2009, 19(15): 2398.
[54] Hegde R, Henry N, Whittle B, Zang H, Hu B, Chen J, Xiao K, Dadmun M. Sol. Energy Mater. Sol. Cells, 2012, 107: 112.
[55] Mihailetchi V D, Xie H, de Boer B, Popescu L M, Hummelen J C, Blom P W, Koster L J A. Appl. Phys. Lett., 2006, 89(1): 012107.
[56] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat. Mater., 2005, 4(11): 864.
[57] Shrotriya V, Yao Y, Li G, Yang Y. Appl. Phys. Lett., 2006, 89(6): 063505.
[58] Zhao Y, Yuan G, Roche P, Leclerc M. Poly., 1995, 36(11): 2211.
[59] Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec C J. Adv. Funct. Mater., 2005, 15(7): 1193.
[60] Ma W, Yang C, Gong X, Lee K, Heeger A J. Adv. Funct. Mater., 2005, 15(10): 1617.
[61] Park J K, Jo J, Seo J H, Moon J S, Park Y D, Lee K, Heeger A J, Bazan G C. Adv. Mater., 2011, 23(21): 2430.
[62] Huang Y, Kramer E J, Heeger A J, Bazan G C. Chem. Rev., 2014, 114(14): 7006.
[63] Blom P W M, Mihailetchi V D, Koster L J A, Markov D E. Adv. Mater., 2007, 19(12): 1551.
[64] Huang Y, Zhang M, Ye L, Guo X, Han C C, Li Y, Hou J. J. Mater. Chem., 2012, 22(12): 5700.
[65] Huang Y, Huo L, Zhang S, Guo X, Han C C, Li Y, Hou J. Chem. Commun. (Camb.), 2011, 47(31): 8904.
[66] Huang Y, Guo X, Liu F, Huo L, Chen Y, Russell T P, Han C C, Li Y, Hou J. Adv. Mater., 2012, 24(25): 3383.
[67] Zhang Y, Zou J, Yip H L, Chen K S, Zeigler D F, Sun Y, Jen A K Y. Chem. Mater., 2011, 23(9): 2289.
[68] Chirvase D, Parisi J, Hummelen J C, Dyakonov V. Nanotechnology, 2004, 15(9): 1317.
[69] Yang X, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J. Nano Lett., 2005, 5(4): 579.
[70] Chellappan V, Ng G M, Tan M J, Goh W P, Zhu F. Appl. Phys. Lett., 2009, 95(26): 263305.
[71] van Bavel S S, Bãrenklau M, de With G, Hoppe H, Loos J. Adv. Funct. Mater., 2010, 20(9): 1458.
[72] McCulloch I, Heeney M, Bailey C, Genevicius K, Macdonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc M L, Kline R J, McGehee M D, Toney M F. Nat. Mater., 2006, 5(4): 328.
[73] Parmer J E, Mayer A C, Hardin B E, Scully S R, McGehee M D, Heeney M, McCulloch I. Appl. Phys. Lett., 2008, 92(11): 113309.
[74] Chabinyc M L, Toney M F, Kline R J, McCulloch I, Heeney M. J. Am. Chem. Soc., 2007, 129(11): 3226.
[75] Mayer A C, Toney M F, Scully S R, Rivnay J, Brabec C J, Scharber M, Koppe M, Heeney M, McCulloch I, McGehee M D. Adv. Funct. Mater., 2009, 19(8): 1173.
[76] Miller N C, Cho E, Junk M J, Gysel R, Risko C, Kim D, Sweetnam S, Miller C E, Richter L J, Kline R J, Heeney M, McCulloch I, Amassian A, Acevedo-Feliz D, Knox C, Hansen M R, Dudenko D, Chmelka B F, Toney M F, Bredas J L, McGehee M D. Adv. Mater., 2012, 24(45): 6071.
[77] Hwang Y J, Earmme T, Courtright B A E, Eberle F N, Jenekhe S A. J. Am. Chem. Soc., 2015, 137(13): 4424.
[78] Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem. Rev., 2015, 115(23): 12666.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[3] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[4] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[5] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[6] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[7] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[8] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[9] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[10] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[11] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[12] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[13] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[14] Lu Mengxia, Zhang Tao, Wang Wen, Ling Qidan. The Research Progress on Naphthalene Diimide Based n-Type Polymer Acceptor Materials [J]. Progress in Chemistry, 2016, 28(6): 872-884.
[15] Ju Chenggong, Zhang Bao, Feng Yaqing. Organolead Halide Perovskite Solar Cells [J]. Progress in Chemistry, 2016, 28(2/3): 219-231.