中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 93-101 DOI: 10.7536/PC160444 Previous Articles   Next Articles

• Review •

Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering

Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma*   

  1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Reasearch and Development Plan (No.2016YFA0200700) and the National Natural Science Foundation of China (No.21504066, 21534003).
PDF ( 2168 ) Cited
Export

EndNote

Ris

BibTeX

It is known that the active layer morphology of bulk heterojunction organic solar cells has significant impact on the performance of solar cell devices. However, the widely used morphology characterization methods such as transmission electron microscopy (TEM), atomic force microscopy (AFM) have certain limitations in the characterization of organic thin film materials. By using the huge difference of the refractive index of the different materials under the soft X-ray, resonant soft X-ray scattering (R-SoXS) provides highly enhanced contrast, overcomes the drawbacks such as low contrast between/among different organic components and the lack of 3D information, which is important to obtain the phase separation information in the active layer of organic solar cells, to understand the microstructure, and to establish the relationship between the morphology and the photoelectric conversion process. This article provides an overview of the effect of active layer morphology on the performance of bulk heterojunction organic solar cells, introduces the developing process, theoretical background and the analysis method of resonant soft X-ray scattering. Based on these, the application of resonant soft X-ray scattering in the study of the morphology of organic solar cells is reviewed. The application prospects of R-SoXS are also discussed.

Contents
1 Introduction
2 Effect of active layer morphology on the performance of organic solar cell devices
3 The development process of R-SoXS
4 Theoretical background and the analysis methodology of R-SoXS
4.1 Optical constant and contrast
4.2 The experimental process of R-SoXS
4.3 Extracting morphological information from R-SoXS data
5 Research Progress on morphology characterization of organic solar cells by R-SoXS
5.1 Polymer: fullerene based organic solar cells
5.2 Polymer: non-fullerene based organic solar cells
5.3 Ternary organic solar cells
6 Conclusion

CLC Number: 

[1] Li G, Zhu R, Yang Y. Nature Photonics, 2012, 6:153.
[2] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Advanced Materials, 2016, 28:9423.
[3] Carpenter J H, Hunt A, Ade H. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200:2.
[4] Treat N D, Chabinyc M L. Annual Review of Physical Chemistry, 2014, 65:59.
[5] Deibel C, Dyakonov V. Reports on Progress in Physics, 2010, 73:096401.
[6] Taima T, Chikamatsu M, Yoshida Y, Saito K, Yase K. Applied Physics Letters, 2004, 85.
[7] Lunt R R, Giebink N C, Belak A A, Benziger J B, Forrest S R. Journal of Applied Physics, 2009, 105:053711.
[8] Shaw P E, Ruseckas A, Samuel I D W. Advanced Materials, 2008, 20:3516.
[9] Mukherjee S, Proctor C M, Bazan G C, Nguyen T Q, Ade H. Advanced Energy Materials, 2015, 27:1105.
[10] Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H. Nature Photonics, 2014, 8:385.
[11] Steyrleuthner R, di Pietro R, Collins B A, Polzer F, Himmelberger S, Schubert M, Chen Z, Zhang S, Salleo A, Ade H, Facchetti A, Neher D. Journal of the American Chemical Society, 2014, 136:4245.
[12] Wang C, Garcia A, Yan H, Sohn K E, Hexemer A, Nguyen T, Bazan G C, Kramer E J, Ade H. Journal of the American Chemical Society, 2009, 131:12538.
[13] Wang C, Araki T, Watts B, Harton S, Koga T, Basu S, Ade H. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2007, 25:575.
[14] Swaraj S, Wang C, Yan H, Watts B, Luning J, McNeill C R, Ade H. Nano Lett, 2010, 10:2863.
[15] Gann E, Young A T, Collins B A, Yan H, Nasiatka J, Padmore H A, Ade H, Hexemer A, Wang C. The Review of Scientific Instruments, 2012, 83:045110.
[16] Young A T, Arenholz E, Marks S, Schlueter R, Steier C, Padmore H A, Hitchcock A P, Castner D G. Journal of Synchrotron Radiation, 2002, 9:270.
[17] Stöhr J. NEXAFS Spectroscopy. Vol. 25, Springer Science & Business Media, 2013.
[18] Yan H, Wang C, McCarn A R, Ade H. Phys. Rev. Lett., 2013, 110:177401.
[19] Collins B A, Cochran J E, Yan H, Gann E, Hub C, Fink R, Wang C, Schuettfort T, McNeill C. R, Chabinyc M L, Ade H. Nature Materials, 2012, 11:536.
[20] He Y, Li Y. Physical Chemistry Chemical Physics, 2011, 13:1970.
[21] Liu T, Troisi A. Advanced Materials, 2013, 25:1038.
[22] Mukherjee S, Proctor C M, Tumbleston J R, Bazan G C, Nguyen T Q, Ade H. Advanced Materials, 2015, 27:1105.
[23] Chen D, Liu F, Wang C, Nakahara A, Russell T P. Nano Letters, 2011, 11:2071.
[24] Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H. Advanced Energy Materials, 2013, 3:864.
[25] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nature Communications, 2014, 5.
[26] Ma W, Yang G, Jiang K, Carpenter J H, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Advanced Energy Materials, 2015, 5:1501044.
[27] Ye L, Zhang S, Ma W, Fan B, Guo X, Huang Y, Ade H, Hou J. Advanced Materials, 2012, 24:6335.
[28] Wan Q, Guo X, Wang Z, Li W, Guo B, Ma W, Zhang M, Li Y. Adv. Funct. Mater., 2016, 26:6635.
[29] Collins B A, Li Z, Tumbleston J R, Gann E, McNeill C R, Ade H. Advanced Energy Materials, 2013, 3:65.
[30] Lin Y, Zhan X, Materials Horizons, 2014, 1:470.
[31] Bai H, Wu Y, Wang Y, Wu Y, Li R, Cheng P, Zhang M, Wang J, Ma W, Zhan X. J. Mater. Chem. A, 2015, 3:20758.
[32] Lin Y, Zhang Z G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. Energy Environ. Sci., 2015, 8:610.
[33] Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C J, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. Journal of the American Chemical Society, 2016, 138:2973.
[34] Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Advanced Materials, 2015, 27:1170.
[35] Lin H, Chen S, Li Z, Lai J Y, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Advanced Materials, 2015, 27:7299.
[36] Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X. Energy Environ. Sci., 2015, 8:3215.
[37] Deshmukh K D, Qin T, Gallaher J K, Liu A C Y, Gann E, O'Donnell K, Thomsen L, Hodgkiss J M, Watkins S E, McNeill C R. Energy Environ. Sci., 2015, 8:332.
[38] Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton A L, Koleilat G I, Gao Y, Mannsfeld S C, Salleo A, Ade H, Zhao D, Bao Z. Advanced Materials, 2014, 26:3767.
[39] Hwang Y J, Courtright B A, Ferreira A S, Tolbert S H, Jenekhe S A. Advanced Materials, 2015, 27:4578.
[40] Kang H, Uddin M A, Lee C, Kim K H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. Journal of the American Chemical Society, 2015, 137:2359.
[41] Mu C, Liu P, Ma W, Jiang K, Zhao J, Zhang K, Chen Z, Wei Z, Yi Y, Wang J, Yang S, Huang F, Facchetti A, Ade H, Yan H. Advanced Materials, 2014, 26:7224.
[42] Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Advanced Materials, 2015, 27:6046.
[43] Ameri T, Khoram P, Min J, Brabec C J. Advanced Materials, 2013, 25:4245.
[44] Cheng P, Zhan X. Materials Horizons, 2015, 2:462.
[45] Fang J, Wang Z, Zhang J, Zhang Y, Deng D, Wang Z, Lu K, Ma W, Wei Z. Advanced Science, 2015, 2.
[46] Zhang Y J, Deng D, Lu K, Zhang J, Xia B, Zhao Y, Fang J, Wei Z. Advanced materials, 2015, 27:1071.
[47] Zhang J Q, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. Journal of the American Chemical Society, 2015, 137:8176.
[1] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[2] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[3] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[4] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[5] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[6] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[7] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[8] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.