中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2283-2301 DOI: 10.7536/PC220132 Previous Articles   Next Articles

• Review •

Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions

Bai Wenji, Shi Yubing, Mu Weihua(), Li Jiangping, Yu Jiawei   

  1. Faculty of Chemistry and Chemical Engineering, Yunnan Normal University,Kunming 650500, China
  • Received: Revised: Online: Published:
  • Contact: Mu Weihua
  • Supported by:
    National Natural Science Foundation of China(21763033); Top young talents of Yunnan ten thousand people plan
Richhtml ( 13 ) PDF ( 360 ) Cited
Export

EndNote

Ris

BibTeX

Palladium-catalyzed X—H (X=C, O, N, B) functionalization reaction is an important organic synthesis strategy, which can build C—C and C—X (X=O, N, B) bonds in an atomically economical way by employing small molecules such as aryl halides, alkenes or alkynes as substrates. Due to its high yield, good reactivity and wide substrate compatibility, Cs2CO3-assisted palladium-catalyzed X—H (X=C, O, N, B) functionalization reaction has become one of the hot spots in the field of organic synthesis in recent years, and has played a crucial role in constructing C—C and C—X bonds in polycyclic natural product skeletons. Based on previous experimental results, density functional theory (DFT) has been employed to study the Cs2CO3-assisted palladium-catalyzed X—H (X=C,O,N,B) functionalization reaction in detail, so as to help people understand the essence of this type of reaction at microscopic level, and provide inspiration for designing new experimental synthetic routes. Herein, the latest density functional theory research results on Cs2CO3-assisted palladium-catalyzed X—H (X=C,O,N,B) functionalization reactions have been summarized, with corresponding computational results about microcosmic reaction mechanism and role of Cs2CO3 additive emphasized. The present issues and prospects of future development in this field are also summarized and forecast in the end.

Scheme 1 Transition state structures corresponding to four possible reaction mechanisms of palladium-catalyzed aryl C(sp2)—H activation[9,76]
Scheme 2 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed three-component cross-coupling of o-methyl iodobenzene, benzoic anhydride with ethyl acrylate[70]
Scheme 3 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed spirocyclization of acrylamide, and (b) potential energy profiles for aryl C(sp2)—H activation[58]
Scheme 4 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed carbonylative couplings of 4-methoxybromobenzene with polyfluorohydrocarbon, and (b) potential energy profiles for aryl C(sp2)—H activation[71]
Scheme 5 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed Heck reaction of iodobenzene, norbornene with di-tert-butyldiaziridione, and (b) potential energy profiles for aryl C(sp2)—H activation[63]
Scheme 6 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of 2-Chlorobiphenyl[72]
Scheme 7 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed double C—H cracking and cyclization of phenyl triisopropylsilyl ethynyl ether with cinnamyl pivalate, and (b) potential energy profiles for aryl C(sp2)—H activation[78]
Scheme 8 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed arylation coupling of N-aryl-1,2,3-triazole[86]
Scheme 9 Potential energy profiles for Cs2CO3-assisted palladium-catalyzed intermolecular acylation of aryldiazoesters with o-bromobenzaldehydes[65]
Scheme 10 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of pyridine with p-trifluoromethyl haloaryl compound, and (b) potential energy profiles for C(sp2)—H activation[87]
Scheme 11 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed carbonylation of tosyl-protected diarylmethyl-amine[89]
Scheme 12 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of 4-methoxy iodobenzene with 3-arylpropanamides[92]
Scheme 13 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed [2+1] cycloaddition of (Z)-2-bromovinylbenzene with endo-N-(p-tolyl)-norbornene succinimide, and potential energy profiles for alkyl C(sp3)—H activation[93]
Scheme 14 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed intramolecular amidation of 3-phenylpropanamide, and (b) reduction elimination barriers of oxidant R26 and R27[94]
Scheme 15 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed amidation of o-methylnaphthalene carbamoyl chloride, and (b) potential energy profiles for alkyl C(sp3)—H activation[95]
Scheme 16 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed regioselective C(sp3)—H activation of N-isopropyl carbamate[96]
Scheme 17 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed spirocyclization of γ,δ-unsaturated oxime ester, and (b) potential energy profiles for C(sp3)—H activation[97]
Scheme 18 (a) Reaction mechanism for Cs2CO3-assisted Pd/Cu co-catalyzed Sonogashira cross-coupling of phenylacetylene with iodobenzene, and (b) potential energy profiles for Cu-catalyzed cycle[98]
Scheme 19 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed intramolecular coupling of γ-(2-iodoanilino)ketone[103]
Scheme 20 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed cross-coupling of bromobenzene with 4-methyl-4-hydroxy-2-pentanone, and (b) potential energy profiles for O—H activation[104]
Scheme 21 (a) Reaction for Cs2CO3-assisted palladium-catalyzed cross-coupling of 1-bromo-2-(1-phenylvinyl) benzene with 1-phenylcyclobutanol, and (b) potential energy profiles for O—H activation and C—C cleavage[88]
Scheme 22 (a) Cs2CO3-assisted palladium-catalyzed cross-coupling of o-iodoaniline, N-benzoyloxyamine with norbornadiene, and potential energy profiles for C—H with N—H activation (b, R= Boc; c, R= t-butyl)[59]
Scheme 23 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed asymmetric B—H activation to synthesize chiral caged o-carborane (For clarity, all hydrogen atoms except for the key ones have been omitted)[60]
[1]
Nakamura I, Yamamoto Y. Chem. Rev., 2004, 104(5): 2127.

pmid: 15137788
[2]
Trowbridge A, Walton S M, Gaunt M J. Chem. Rev., 2020, 120(5): 2613.

doi: 10.1021/acs.chemrev.9b00462 pmid: 32064858
[3]
Gong H, Yang Y W, Kuang C X. Prog. Chem., 2014, 26(4): 592.
龚浩, 杨义文, 匡春香. 化学进展, 2014, 26(4): 592.).
[4]
Patil N T, Yamamoto Y. Chem. Rev., 2008, 108(8): 3395.

doi: 10.1021/cr050041j
[5]
Xiong Q, Chen H H, Zhang T, Shan C H, Bai R P, Lan Y. Asian J. Org. Chem., 2019, 8(8): 1194.

doi: 10.1002/ajoc.201900314
[6]
Xie H J, Sun Q, Ren G R, Cao Z X. J. Org. Chem., 2014, 79(24): 11911.

doi: 10.1021/jo501618k
[7]
Wang K, Lu Y, Hu F D, Yang J H, Zhang Y, Wang Z X, Wang J B. Organometallics, 2018, 37(1): 1.

doi: 10.1021/acs.organomet.7b00657
[8]
Xu Z Y, Zhang S Q, Liu J R, Chen P P, Li X, Yu H Z, Hong X, Fu Y. Organometallics, 2018, 37(4): 592.

doi: 10.1021/acs.organomet.7b00903
[9]
Shan C H, Zhu L, Qu L B, Bai R P, Lan Y. Chem. Soc. Rev., 2018, 47(20): 7552.

doi: 10.1039/C8CS00036K
[10]
Shen J H, Cheng G L, Cui X L. Prog. Chem., 2012, 24(7): 1324.
沈金海, 程国林, 崔秀灵. 化学进展, 2012, 24(7): 1324.).
[11]
Testa C, Roger J, Fleurat-Lessard P, Hierso J C. Eur. J. Org. Chem., 2019, 2019(2/3): 233.

doi: 10.1002/ejoc.201801138
[12]
Yang Y F, Hong X, Yu J Q, Houk K N. Acc. Chem. Res., 2017, 50(11): 2853.

doi: 10.1021/acs.accounts.7b00440
[13]
Leskinen M V, Madarász Á, Yip K T, Vuorinen A, Pápai I, Neuvonen A J, Pihko P M. J. Am. Chem. Soc., 2014, 136(17): 6453.

doi: 10.1021/ja501681y pmid: 24684203
[14]
Chen X, Engle K, Wang D H, Yu J Q. Angew. Chem. Int. Ed., 2009, 48(28): 5094.

doi: 10.1002/anie.200806273
[15]
Yan H M, Tian Y, Li N, Chang R, Zhang Z X, Zhang X Y, Yang W J, Guo Z, Li Y R. RSC Adv., 2018, 8(53): 30186.

doi: 10.1039/C8RA06077K
[16]
Kefalidis C E, Davi M, Holstein P M, Clot E, Baudoin O. J. Org. Chem., 2014, 79(24): 11903.

doi: 10.1021/jo501610x pmid: 25188526
[17]
Liu J B, Tian Y Y, Zhang X, Wang L L, Chen D Z. Dalton Trans., 2018, 47(14): 4893.

doi: 10.1039/C8DT00015H
[18]
Ackermann L. Chem. Rev., 2011, 111(3): 1315.

doi: 10.1021/cr100412j pmid: 21391562
[19]
Baudoin O. Chem. Soc. Rev., 2011, 40(10): 4902.

doi: 10.1039/c1cs15058h
[20]
Hu X X, Liu J B, Wang L L, Huang F, Sun C Z, Chen D Z. Org. Chem. Front., 2018, 5(10): 1670.

doi: 10.1039/C8QO00094H
[21]
Feng W H, Wang T Y, Liu D Z, Wang X T, Dang Y F. ACS Catal., 2019, 9(8): 6672.

doi: 10.1021/acscatal.9b01412
[22]
Wang C P, Naren N A, Zheng P F, Dong G B. J. Am. Chem. Soc., 2020, 142(19): 8962.

doi: 10.1021/jacs.0c02654
[23]
Cao X Q, Zhang Y G. Green Chem., 2016, 18(9): 2638.

doi: 10.1039/C6GC00163G
[24]
Zuo Z J, Wang J, Liu J J, Wang Y Y, Luan X J. Angew. Chem. Int. Ed., 2020, 59(2): 653.

doi: 10.1002/anie.201909557
[25]
Szpera R, Isenegger P G, Ghosez M, Straathof N J W, Cookson R, Blakemore D C, Richardson P, Gouverneur V. Org. Lett., 2020, 22(16): 6573.

doi: 10.1021/acs.orglett.0c02347
[26]
Tan B J, Bai L, Ding P, Liu J J, Wang Y Y, Luan X J. Angew. Chem. Int. Ed., 2019, 58(5): 1474.

doi: 10.1002/anie.201813202
[27]
Cella J A, Bacon S W. J. Org. Chem., 1984, 49(6): 1122.

doi: 10.1021/jo00180a033
[28]
Ouyang K B, Xi Z F. Acta Chim. Sinica., 2013, 71(1): 13.

doi: 10.6023/A12110984
欧阳昆冰, 席振峰. 化学学报, 2013, 71(1): 13.).
[29]
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev., 2019, 119(4): 2192.

doi: 10.1021/acs.chemrev.8b00507
[30]
Vogiatzis K D, Polynski M V, Kirkland J K, Townsend J, Hashemi A, Liu C, Pidko E A. Chem. Rev., 2019, 119(4): 2453.

doi: 10.1021/acs.chemrev.8b00361
[31]
Zhu L, Jiang Y Y, Fan X, Liu P, Ling B P, Bi S W. Organometallics, 2018, 37(14): 2222.

doi: 10.1021/acs.organomet.8b00185
[32]
Simmons E M, Hartwig J F. Angew. Chem. Int. Ed., 2012, 51(13): 3066.

doi: 10.1002/anie.201107334 pmid: 22392731
[33]
Niu P P, Liu P Y, Meng Y N, Yu F, He Y P. J. Org. Chem., 2021, 86(3): 3096.

doi: 10.1021/acs.joc.0c02872
[34]
Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys., 2010, 132(15): 154104.

doi: 10.1063/1.3382344
[35]
Grimme S. J. Comput. Chem., 2006, 27(15): 1787.

doi: 10.1002/jcc.20495
[36]
Chai J D, Head-Gordon M. Phys. Chem. Chem. Phys., 2008, 10(44): 6615.

doi: 10.1039/b810189b
[37]
Zhao Y, Truhlar D G. Theor. Chem. Acc., 2008, 120(1/3): 215.

doi: 10.1007/s00214-007-0310-x
[38]
Jacobsen H, Cavallo L. ChemPhysChem, 2012, 13(2): 562.

doi: 10.1002/cphc.201100705 pmid: 22213579
[39]
Cramer C J, Truhlar D G. Phys. Chem. Chem. Phys., 2009, 11(46): 10757.

doi: 10.1039/b907148b
[40]
Xie H J, Fan T, Lei Q F, Fang W J. Sci. China Chem., 2016, 59(11): 1432.

doi: 10.1007/s11426-016-0018-2
[41]
Newton C G, Wang S G, Oliveira C C, Cramer N. Chem. Rev., 2017, 117(13): 8908.

doi: 10.1021/acs.chemrev.6b00692
[42]
Favier I, Pla D, GÓmez M. Chem. Rev., 2020, 120(2): 1146.

doi: 10.1021/acs.chemrev.9b00204
[43]
Wang Z H, Fu Y J, Zhang Q Y, Liu H, Wang J. J. Org. Chem., 2020, 85(12): 7683.

doi: 10.1021/acs.joc.0c00115
[44]
Veerakumar P, Thanasekaran P, Lu K L, Lin K C, Rajagopal S. ACS Sustainable Chem. Eng., 2017, 5(10): 8475.

doi: 10.1021/acssuschemeng.7b00922
[45]
Shen C R, Wei Z H, Jiao H J, Wu X F. Chem. Eur. J., 2017, 23(54): 13262.

doi: 10.1002/chem.201703190
[46]
Cheng J Z, Liu L L, Liao G F, Shen Z Q, Tan Z R, Xing Y Q, Li X X, Yang K, Chen L, Liu S Y. J. Mater. Chem. A, 2020, 8(12): 5890.

doi: 10.1039/C9TA13514F
[47]
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia M F, Wencel-Delord J, Besset T, Maes B U W, Schnürch M. Chem. Soc. Rev., 2018, 47(17): 6603.

doi: 10.1039/c8cs00201k pmid: 30033454
[48]
Sauermann N, Meyer T H, Tian C, Ackermann L. J. Am. Chem. Soc., 2017, 139(51): 18452.

doi: 10.1021/jacs.7b11025 pmid: 29149561
[49]
Gensch T, James M J, Dalton T, Glorius F. Angew. Chem. Int. Ed., 2018, 57(9): 2296.

doi: 10.1002/anie.201710377
[50]
Shi H, Herron A N, Shao Y, Shao Q, Yu J Q. Nature, 2018, 558(7711): 581.

doi: 10.1038/s41586-018-0220-1
[51]
Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed., 2019, 58(37): 12803.

doi: 10.1002/anie.201904214
[52]
He J, Wasa M, Chan K S L, Shao Q, Yu J Q. Chem. Rev., 2017, 117(13): 8754.

doi: 10.1021/acs.chemrev.6b00622
[53]
Deng R X, Huang Y Z, Ma X N, Li G C, Zhu R, Wang B, Kang Y B, Gu Z H. J. Am. Chem. Soc., 2014, 136(12): 4472.

doi: 10.1021/ja500699x
[54]
Liu L T, Zhang A A, Wang Y F, Zhang F Q, Zuo Z Z, Zhao W X, Feng C L, Ma W J. Org. Lett., 2015, 17(9): 2046.

doi: 10.1021/acs.orglett.5b00122
[55]
Yang L, Neuburger M, Baudoin O. Angew. Chem. Int. Ed., 2018, 57(5): 1394.

doi: 10.1002/anie.201712061 pmid: 29231274
[56]
Scheipers I, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed., 2019, 58(20): 6545.

doi: 10.1002/anie.201901848 pmid: 30866139
[57]
Zhang Y C, Geng H Q, Wu X F. Angew. Chem. Int. Ed., 2021, 60(45): 24292.

doi: 10.1002/anie.202111206
[58]
Franzoni I, Yoon H, García-LÓpez J A, Poblador-Bahamonde A I, Lautens M. Chem. Sci., 2018, 9(6): 1496.

doi: 10.1039/c7sc04709f pmid: 29675193
[59]
Zhang B S, Li Y K, Zhang Z, An Y, Wen Y H, Gou X Y, Quan S Q, Wang X G, Liang Y M. J. Am. Chem. Soc., 2019, 141(24): 9731.

doi: 10.1021/jacs.9b05009
[60]
Cheng R F, Li B W, Wu J, Zhang J, Qiu Z Z, Tang W J, You S L, Tang Y, Xie Z W. J. Am. Chem. Soc., 2018, 140(13): 4508.

doi: 10.1021/jacs.8b01754
[61]
Xu H Y, Muto K, Yamaguchi J, Zhao C Y, Itami K, Musaev D G. J. Am. Chem. Soc., 2014, 136(42): 14834.

doi: 10.1021/ja5071174
[62]
Guo Z W, Li M, Mou X Q, He G, Xue X S, Chen G. Org. Lett., 2018, 20(6): 1684.

doi: 10.1021/acs.orglett.8b00530
[63]
Li B W, Wang M Y, Fang S, Liu J Y. Organometallics, 2019, 38(9): 2189.

doi: 10.1021/acs.organomet.9b00168
[64]
Xu L P, Roque J B, Sarpong R, Musaev D G. J. Am. Chem. Soc., 2020, 142(50): 21140.

doi: 10.1021/jacs.0c10220
[65]
Yu Y H, Lu Q Q, Chen G, Li C S, Huang X L. Angew. Chem. Int. Ed., 2018, 57(1): 319.

doi: 10.1002/anie.201710317
[66]
Hagui W, Doucet H, SoulÉ J F. Chem, 2019, 5(8): 2006.

doi: 10.1016/j.chempr.2019.06.005
[67]
Yao Q J, Xie P P, Wu Y J, Feng Y L, Teng M Y, Hong X, Shi B F. J. Am. Chem. Soc., 2020, 142(42): 18266.

doi: 10.1021/jacs.0c09400
[68]
Zhang X P, Ding Q Q, Wang J J, Yang J Y, Fan X S, Zhang G S. Green Chem., 2021, 23(1): 526.

doi: 10.1039/D0GC03254A
[69]
Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116(19): 12564.

pmid: 27689804
[70]
Liang Y J, Jiang Y Y, Liu Y X, Bi S W. Org. Biomol. Chem., 2017, 15(29): 6147.

doi: 10.1039/C7OB01021D
[71]
Mondal T, Dutta S, De S, Koley D. J. Org. Chem., 2019, 84(1): 257.

doi: 10.1021/acs.joc.8b02630 pmid: 30525639
[72]
Xu L P, Haines B E, Ajitha M J, Murakami K, Itami K, Musaev D G. ACS Catal., 2020, 10(5): 3059.

doi: 10.1021/acscatal.9b05328
[73]
Ackermann L, Vicente R, Potukuchi H K, Pirovano V. Org. Lett., 2010, 12(21): 5032.

doi: 10.1021/ol102187e pmid: 20929268
[74]
Sharma A, Hazarika H, Sarmah M, Das B, Gogoi P. J. Org. Chem., 2020, 85(17): 11382.

doi: 10.1021/acs.joc.0c01475
[75]
Chouhan G G, Alper H. J. Org. Chem., 2009, 74(16): 6181.

doi: 10.1021/jo9010574 pmid: 19606884
[76]
Ke Z F, Cundari T R. Organometallics, 2010, 29(4): 821.

doi: 10.1021/om900895t
[77]
Zhou P X, Ye Y Y, Liu C, Zhao L B, Hou J Y, Chen D Q, Tang Q, Wang A Q, Zhang J Y, Huang Q X, Xu P F, Liang Y M. ACS Catal., 2015, 5(8): 4927.

doi: 10.1021/acscatal.5b00516
[78]
Gimferrer M, D’Alterio M C, Talarico G, Minami Y, Hiyama T, Poater A. J. Org. Chem., 2020, 85(19): 12262.

doi: 10.1021/acs.joc.0c01503 pmid: 32786640
[79]
Unoh Y, Satoh T, Hirano K, Miura M. ACS Catal., 2015, 5(11): 6634.

doi: 10.1021/acscatal.5b01896
[80]
Dong Z, Ren Z, Thompson S J, Xu Y, Dong G B. Chem. Rev., 2017, 117(13): 9333.

doi: 10.1021/acs.chemrev.6b00574 pmid: 28125210
[81]
Xi Y M, Ma S J, Hartwig J F. Nature, 2020, 588(7837): 254.

doi: 10.1038/s41586-020-2919-z
[82]
Xu H, Wang D J, Chen Y R, Wan W, Deng H M, Ma K S, Wu S X, Hao J, Jiang H Z. Org. Chem. Front., 2017, 4(7): 1239.

doi: 10.1039/C7QO00119C
[83]
Xu Q, Zheng B H, Zhou X X, Pan L, Liu Q, Li Y F. Org. Lett., 2020, 22(5): 1692.

doi: 10.1021/acs.orglett.9b04201
[84]
Chen Z Y, Ye C Q, Zhu H, Zeng X P, Yuan J J. Chem. Eur. J., 2014, 20(15): 4237.

doi: 10.1002/chem.201400084
[85]
Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2013, 135(30): 10954.

doi: 10.1021/ja405503y pmid: 23865901
[86]
Yamajala K D B, Banerjee S, Patil M. J. Org. Chem., 2015, 80(6): 3003.

doi: 10.1021/jo5026145 pmid: 25710598
[87]
Salamanca V, Toledo A, AlbÉniz A C. J. Am. Chem. Soc., 2018, 140(51): 17851.

doi: 10.1021/jacs.8b10680 pmid: 30521317
[88]
Wang Q N, Chen R J, Lou J, Zhang D H, Zhou Y G, Yu Z K. ACS Catal., 2019, 9(12): 11669.

doi: 10.1021/acscatal.9b04161
[89]
Bai X F, Mu Q C, Xu Z, Yang K F, Li L, Zheng Z J, Xia C G, Xu L W. ACS Catal., 2019, 9(2): 1431.

doi: 10.1021/acscatal.8b04725
[90]
Dai Z Y, Nong Z S, Song S, Wang P S. Org. Lett., 2021, 23(8): 3157.

doi: 10.1021/acs.orglett.1c00801
[91]
Kuwano R, Yokogi M, Ken S K, Masaoka S, Miura T, Won S. Org. Process Res. Dev., 2019, 23(8): 1568.

doi: 10.1021/acs.oprd.9b00210
[92]
Tong H R, Zheng S J, Li X H, Deng Z Q, Wang H, He G, Peng Q, Chen G. ACS Catal., 2018, 8(12): 11502.

doi: 10.1021/acscatal.8b03654
[93]
Ying F, Zhang Y T, Xiang C Y, Song Z J, Xie H J, Bao W L. Front. Chem., 2019, 7: 169.

doi: 10.3389/fchem.2019.00169
[94]
Tong H R, Zheng W R, Lv X Y, He G, Liu P, Chen G. ACS Catal., 2020, 10(1): 114.

doi: 10.1021/acscatal.9b04768
[95]
Zhang Q, Yu H Z, Fu Y. Organometallics, 2013, 32(15): 4165.

doi: 10.1021/om400370v
[96]
Katayev D, Larionov E, Nakanishi M, Besnard C, Kündig E P. Chem. Eur. J., 2014, 20(46): 15021.

doi: 10.1002/chem.201403985
[97]
Wei W X, Li Y K, Wen Y T, Li M, Li X S, Wang C T, Liu H C, Xia Y, Zhang B S, Jiao R Q, Liang Y M. J. Am. Chem. Soc., 2021, 143(20): 7868.

doi: 10.1021/jacs.1c04114 pmid: 33974798
[98]
Wang X B, Song Y M, Qu J P, Luo Y. Organometallics, 2017, 36(5): 1042.

doi: 10.1021/acs.organomet.7b00010
[99]
Shi J L, Wang T, Huang Y S, Zhang X H, Wu Y D, Cai Q. Org. Lett., 2015, 17(4): 840.

doi: 10.1021/ol5036613
[100]
Liu J C, Peng H, Yang Y J, Jiang H F, Yin B L. J. Org. Chem., 2016, 81(20): 9695.

doi: 10.1021/acs.joc.6b01774
[101]
Wang B, He D, Ren B G, Yao T L. Chem. Commun., 2020, 56(6): 900.

doi: 10.1039/C9CC08438J
[102]
Yao T L, Wang B, He D, Zhang X F, Li X, Fang R. Org. Lett., 2020, 22(17): 6784.

doi: 10.1021/acs.orglett.0c02297
[103]
Fernández I, SolÉ D, Sierra M A. J. Org. Chem., 2011, 76(6): 1592.

doi: 10.1021/jo1020954 pmid: 21284378
[104]
Zhang S L, Yu Z L. J. Org. Chem., 2016, 81(1): 57.

doi: 10.1021/acs.joc.5b02098
[105]
Hu L X, Gui W J, Liu Z C, Jiang B S. RSC Adv., 2014, 4(72): 38258.

doi: 10.1039/C4RA05670A
[106]
Jiang B S, Hu L X, Gui W J. RSC Adv., 2014, 4(27): 13850.

doi: 10.1039/C4RA00821A
[107]
Aljaar N, Al-Noaimi M, Conrad J, Beifuss U. J. Org. Chem., 2021, 86(2): 1408.

doi: 10.1021/acs.joc.0c01923
[108]
Chen X, Sun P, Mo B C, Chen C X, Peng J S. J. Org. Chem., 2021, 86(1): 352.

doi: 10.1021/acs.joc.0c02126 pmid: 33251795
[109]
Ahmadi F, Goli H R, Balmohammadi Y, Bazgir A. J. Org. Chem., 2021, 86(1): 146.

doi: 10.1021/acs.joc.0c01860
[110]
Quan Y J, Xie Z W. J. Am. Chem. Soc., 2015, 137(10): 3502.

doi: 10.1021/jacs.5b01169
[111]
Spokoyny A M, Lewis C D, Teverovskiy G, Buchwald S L. Organometallics, 2012, 31(24): 8478.

doi: 10.1021/om301116x
[112]
Mu W H, Liu W Z, Cheng R J, Dou L J, Liu P, Hao Q. Catalysts, 2019, 9(6): 548.

doi: 10.3390/catal9060548
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[5] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Kaili Gu, Haozhen Li, Jinhua Zhang, Jinxiang Li. Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron [J]. Progress in Chemistry, 2021, 33(10): 1812-1822.
[8] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Zehuai Mou, Yinjun Wang, Hongyan Xie. Rare-Earth Metal Complexes-Mediated Stereoselective Polymerization of Aromatic Polar Vinyl Monomers [J]. Progress in Chemistry, 2020, 32(12): 1885-1894.
[11] Mengru Yang, Huajing Li, Ningdan Luo, Jin Li, Anning Zhou, Yuangang Li. Electro-Chemical Reduction of Carbon Dioxide into Ethylene: Catalyst, Conditions and Mechanism [J]. Progress in Chemistry, 2019, 31(2/3): 245-257.
[12] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[13] Fengyang Zhao, Yongjian Jiang, Tao Liu, Chunchun Ye. Nanofiltration Membrane Based on Novel Materials [J]. Progress in Chemistry, 2018, 30(7): 1013-1027.
[14] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[15] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.