中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 55-71 DOI: 10.7536/PC190505 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Synthesis of Dehydroamino Acids and Their Applications in the Drug Research and Development

Tong Wang, Wenjiao Zhao, Liangchun Li, Renlin Zheng, Dequn Sun*()   

  1. 1. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
  • Received: Online: Published:
  • Contact: Dequn Sun
  • About author:
Richhtml ( 37 ) PDF ( 671 ) Cited
Export

EndNote

Ris

BibTeX

Traditional polypeptides usually have the disadvantages of easy hydrolyzation, poor cell membrane permeability, and unstable conformation, which limits their application as a drug in the field of disease treatment. The conformational restriction caused by incorporation of dehydroamino acids into polypeptide can effectively improve the metabolic stability and bioavailability of peptides. In this paper, the synthesis methods and the recent applications in drug design of four kinds of dehydroamino acids including α,β-dehydro-α-amino acids, β,γ-dehydro-α-amino acids, α-dehydro-β-amino acids and α,β-dehydro-β-amino acids are reviewed, which could provide reference for the related research.

Scheme. 1 The Z, E isomers of α,β-dehydro-α-amino acids[11]
Scheme. 2 The Z, E isomers of β,γ-dehydro-α-amino acids[30]
Table 1 IC50 (μM)values of the N-protected α,β-dehydroalanine derivatives assessed in A549, AGS, SH-SY5Y and MRC-5 cell lines by MTT assay[32]
Scheme. 3 Chemical structure of four α,β-dehydroalanine derivatives[32]
Scheme. 4 Chemical structure of ΔFd[33]
Scheme. 5 Chemical structures of methoxyvinylglycine and aminoethoxyvinylglycine[41,42]
Scheme. 6 Synthesis of α,β-dehydro-α-amino acids by β-hydroxyl elimination[43,44]
Scheme. 7 Chemical structure of phomopsin A and B[45]
Scheme. 8 Two dehydrophenylalanine analogues[46]
Scheme. 9 The synthesis route of 3-phthalimido-1,5-benzodiazepine-2-one derivatives[47]
Scheme. 10 Synthesis of α,β-dehydro-α-amino acids by N-hydroxyl/chlorinated elimination[52]
Scheme. 11 Synthesis of α,β-dehydro-α-amino acids by HWE reaction[54,55]
Scheme. 12 The chemical structure of NOSO-95[56]
Scheme. 13 The chemical structure of Telcagepant[57]
Scheme. 14 Synthesis of α,β-dehydro-α-amino acids by erlenmeyer synthesis and oxazolone ring opening[59]
Scheme. 15 Synthesis of compound with anticholinesterase activity by Topuzyan [61]
Scheme. 16 Synthesis of α,β-dehydro-α-amino acids by nitro compound[62]
Scheme. 17 The chemical structure of Yaku’amide A[66]
Scheme. 18 Synthesis of α,β-dehydro-α-amino acids by Cu-catalyzed cross-coupling method[66]
Scheme. 19 Synthesis of α,β-dehydro-α-amino acids by nucleophilic addition of alkynyl ester[67]
Scheme. 20 The chemical structure of cyclodipeptide 2,5-diketopiperazines[69]
Scheme. 21 Synthesis of α,β-dehydro-α-amino acids by Schöllkopf reaction[71]
Scheme. 22 The chemical structures of compounds 56~59[73]
Scheme. 23 Synthesis of α,β-dehydro-α-amino acids by α-keto acids ester[76]
Scheme. 24 The chemical structure of Antrimycins[76]
Scheme. 25 Synthesis of α,β-dehydro-α-amino acids by MAHOs[79]
Scheme. 26 Synthesis of α,β-dehydro-α-amino acids by α,β-unsaturated ester[81]
Scheme. 27 The chemical structure of AnthraxLethal factor inhibitor[83]
Scheme. 28 Synthesis of α,β-dehydro-α-amino acids by Mukaiyama-Michael addition[84]
Scheme. 29 Four cyclic α,β-dehydro-amino acids[86]
Scheme. 30 Li’s synthetic route of cyclic α,β-dehydro-amino acids[87]
Scheme. 31 Kublitskii’s synthetic route of cyclic α,β-dehydro-amino acids[88]
Scheme. 32 Huy’s synthetic route of cyclic α,β-dehydro-amino acids[89]
Scheme. 33 Williams’ synthetic route of cyclic α,β-dehydro-amino acids[90]
Scheme. 34 Palacios’ synthetic route of cyclic α,β-dehydro-amino acids[91]
Scheme. 35 Synthesis of β,γ-dehydro-α-amino acids by α-alkenyl acids[21,94,95]
Scheme. 36 Synthesis of β,γ-dehydro-α-amino acids by oxidation and pyrolysis of α-amino acids[97,100,101]
Scheme. 37 Synthesis of β,γ-dehydro-α-amino acids by acetal method[102,103]
Scheme. 38 Synthesis of β,γ-dehydro-α-amino acids by oxazolane open-loop[105]
Scheme. 39 Synthetic route of (S,Z)-APPA[108]
Scheme. 40 Synthesis of β,γ-dehydro-α-amino acids by cyclic ortho ester protection[109]
Scheme. 41 Synthesis of β,γ-dehydro-α-amino acids by ring opening of high-serine lactone[111]
Scheme. 42 Synthesis of cyclic β,γ-dehydro-α-amino acids[113,114,115]
Scheme. 43 The chemical structure of three β-dehydroamino acids
Scheme. 44 Rajesh’s synthetic route of cyclic α-dehydro-β-amino acids[117]
Scheme. 45 Paira’s synthetic route of α-dehydro-β-amino acids[120]
Scheme. 46 Ghosh’s synthetic route of α-dehydro-β-amino acids[121]
Scheme. 47 The α-dehydro-β-amino acids synthetic route of Buchholz and Hoffmann[123]
Scheme. 48 The chymotrypsin inhibitor synthesized by Tanaka[125]
Scheme. 49 The α-dehydro-β-amino acids synthetic route of Bierbaum[127]
Scheme. 50 Synthesis of α-dehydro-β-amino acids by aza-Morita-Baylis-Hillman reaction[128]
Scheme. 51 The chemical structure of Crotanecine[130]
Scheme. 52 The α,β-dehydro-β-amino acids synthetic route of Reeve[131]
Scheme. 53 The α,β-dehydro-β-amino acids synthetic route of Jeong[132]
Scheme. 54 The α,β-dehydro-β-amino acids synthetic route of Liu[134]
[1]
Gante J . Angew. Chem. Int. Ed. Engl., 1994,33:1699. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[2]
Adessi C , Soto C. Curr. Med. Chem., 2002,9:963. https://www.ncbi.nlm.nih.gov/pubmed/11966456

doi: 10.2174/0929867024606731 pmid: 11966456
[3]
Vlieghe P , Lisowski V , Martinez J , Khrestchatisky M . . Drug Discov. Today, 2010,15:40. https://www.ncbi.nlm.nih.gov/pubmed/19879957

doi: 10.1016/j.drudis.2009.10.009 pmid: 19879957
[4]
Powers J P S , Hancock R E . Peptides, 2003,24:1681. https://www.ncbi.nlm.nih.gov/pubmed/15019199

doi: 10.1016/j.peptides.2003.08.023 pmid: 15019199
[5]
Lau J L , Dunn M K . Bioorg. Med. Chem., 2018,26:2700. https://www.ncbi.nlm.nih.gov/pubmed/28720325

doi: 10.1016/j.bmc.2017.06.052 pmid: 28720325
[6]
Danho W , Swistok J , Khan W , Chu X J , Cheung A , Fry D , Sun H , Kurylko G , Rumennik L , Cefalu J , Cefalu G , Nunn P . Peptides for Youth, 2009,611:467.
[7]
Du Q S , Xie N Z , Huang R B . Med. Chem., 2015,11:235. https://www.ncbi.nlm.nih.gov/pubmed/25548931

doi: 10.2174/1573406411666141229163355 pmid: 25548931
[8]
Checco J W , Lee E F , Evangelista M , Sleebs N J , Rogers K , Pettikiriarachchi A , Kershaw N J , Eddinger G A , Belair D G , Wilson J L , Eller C H , Raines R T , Murphy W L , Smith B J , Gellman S H , Fairlie W D . J. Am. Chem. Soc., 2015,137:11365. https://www.ncbi.nlm.nih.gov/pubmed/26317395

doi: 10.1021/jacs.5b05896 pmid: 26317395
[9]
Di L . The AAPS Journal, 2015,17:134. https://www.ncbi.nlm.nih.gov/pubmed/25366889

doi: 10.1208/s12248-014-9687-3 pmid: 25366889
[10]
Avan I , Hall C D , Katritzky A R . Chem. Soc. Rev., 2014,43:3575. https://www.ncbi.nlm.nih.gov/pubmed/24626261

doi: 10.1039/c3cs60384a pmid: 24626261
[11]
侯辉(Hou H), 孙德群(Sun D Q) . 化学进展(Progress in Chemistry), 2015,27:1260.
[12]
周家驹(Zhou J J), 雷静(Lei J), 谢桂荣(Xie G R), 李仁利(Li R L). . 化学进展(Progress in Chemistry), 2000,12:332.
[13]
Nandy J P , Prakesch M , Khadem S , Reddy P T , Sharma U , Arya P . Chem. Rev., 2009,109:1999. https://www.ncbi.nlm.nih.gov/pubmed/19249849

doi: 10.1021/cr800188v pmid: 19249849
[14]
Bowers A A , Acker M G , Koglin A , Walsh C T . J. Am. Chem. Soc., 2010,132:7519. https://www.ncbi.nlm.nih.gov/pubmed/20455532

doi: 10.1021/ja102339q pmid: 20455532
[15]
De Bruijn A D , Roelfes G . Chemistry (Easton), 2018,24:11314.
[16]
Ueoka R , Ise Y , Ohtsuka S , Okada S , Yamori T , Matsunaga S . J. Am. Chem. Soc., 2010,132:17692. https://www.ncbi.nlm.nih.gov/pubmed/21121605

doi: 10.1021/ja109275z pmid: 21121605
[17]
Jiang J , Ma Z , Castle S L . Tetrahedron, 2015,71:5431. https://linkinghub.elsevier.com/retrieve/pii/S004040201500839X

doi: 10.1016/j.tet.2015.06.001
[18]
Baldisserotto A , Ferretti V , Destro F , Franceschini C , Marastoni M , Gavioli R , Tomatis R . J. Med. Chem., 2010,53:6511. https://www.ncbi.nlm.nih.gov/pubmed/20687609

doi: 10.1021/jm100122e pmid: 20687609
[19]
Makowski M , Lenartowicz P , Oszywa B , Jewginski M , Pawelczak M , Kafarski P . Med. Chem. Res., 2015,24:3157. https://www.ncbi.nlm.nih.gov/pubmed/26190908

doi: 10.1007/s00044-015-1366-0 pmid: 26190908
[20]
Siodłak D . Amino Acids, 2015,47:1. https://www.ncbi.nlm.nih.gov/pubmed/25323736

doi: 10.1007/s00726-014-1846-4 pmid: 25323736
[21]
Baldwin J E , Haber S B , Hoskins C , Kruse L I . J. Org. Chem., 1977,42:1239. https://www.ncbi.nlm.nih.gov/pubmed/403264

doi: 10.1021/jo00427a031 pmid: 403264
[22]
Singh T P , Kaur P . Prog. Biophys. Mol. Bio., 1996,66:141. https://www.ncbi.nlm.nih.gov/pubmed/9175427

doi: 10.1016/s0079-6107(97)85628-3 pmid: 9175427
[23]
Mathur P , Ramakumar S , Chauhan V S . Biopolymers, 2004,76:150. https://www.ncbi.nlm.nih.gov/pubmed/15054895

doi: 10.1002/bip.10571 pmid: 15054895
[24]
Humphrey J M , Chamberlin A R . Chem. Rev., 1997,97:2243. https://www.ncbi.nlm.nih.gov/pubmed/11848900

doi: 10.1021/cr950005s pmid: 11848900
[25]
Rudresh, Ramakumar S , Ramagopal U A , Inai Y , Goel S , Sahal D , Chauhan V S . Structure, 2004,12:389. https://www.ncbi.nlm.nih.gov/pubmed/15016355

doi: 10.1016/j.str.2004.02.014 pmid: 15016355
[26]
Saavedra C J , Hernandez D , Boto A . Chemistry (Easton), 2018,24:599.
[27]
Trantzschel T , Plaumann M , Bernarding J , Lego D , Ratajczyk T , Dillenberger S , Buntkowsky G , Bargon J , Bommerich U . Appl. Magn. Reson., 2013,44:267.
[28]
Huang J , Hong M , Wang C C , Kramer S , Lin G Q , Sun X W . J. Org. Chem., 2018,83:12838. https://www.ncbi.nlm.nih.gov/pubmed/30207727

doi: 10.1021/acs.joc.8b01693 pmid: 30207727
[29]
Cerutti E , Viale A , Nervi C , Gobetto R , Aime S . J. Phys. Chem. A, 2015,119:11271. https://www.ncbi.nlm.nih.gov/pubmed/26509884

doi: 10.1021/acs.jpca.5b06802 pmid: 26509884
[30]
Dardenne G , Casimir J , Marlier M , Larsen P O . Phytochemistry, 1974,13:1897.
[31]
S’Wiatek-Kozłowska J , Brasuń J , Chruściński L , Chruścińska E , Makowski M , Kozłowski H . New J. Chem., 2000,24:893.
[32]
Videira R A , Andrade P B , Monteiro L S , Valentao P , Ferreira P M T , Pereira D M . Toxicol. in Vitro, 2018,47:26. https://www.ncbi.nlm.nih.gov/pubmed/29107685

doi: 10.1016/j.tiv.2017.10.027 pmid: 29107685
[33]
Dewan P C , Anantharaman A , Chauhan V S , Sahal D . Biochemistry, 2009,48:5642. https://www.ncbi.nlm.nih.gov/pubmed/19432402

doi: 10.1021/bi900272r pmid: 19432402
[34]
Vilaça H , Pereira G , Castro T G , Hermenegildo B F , Shi J , Faria T Q , Micaêlo N , Brito R M M , Xu B , Castanheira E M S , Martins J A , Ferreira P M T . J. Mater. Chem. B, 2015,3:6355. https://www.ncbi.nlm.nih.gov/pubmed/32262754

doi: 10.1039/c5tb00501a pmid: 32262754
[35]
Gupta M , Bagaria A , Mishra A , Mathur P , Basu A , Ramakumar S , Chauhan V S . Adv. Mater., 2007,19:858.
[36]
Parween S , Misra A , Ramakumar S , Chauhan V S . J. Mater. Chem. B, 2014,2:3096. https://www.ncbi.nlm.nih.gov/pubmed/32261685

doi: 10.1039/c3tb21856b pmid: 32261685
[37]
Varshney A , Panda J J , Singh A K , Yadav N , Bihari C , Biswas S , Sarin S K , Chauhan V S . Hepatology, 2018,67:1392. https://www.ncbi.nlm.nih.gov/pubmed/29108133

doi: 10.1002/hep.29643 pmid: 29108133
[38]
Singh P K , Chibh S , Dube T , Chauhan V S , Panda J J . Pharm. Res., 2018,35:35. https://www.ncbi.nlm.nih.gov/pubmed/29362936

doi: 10.1007/s11095-017-2299-8 pmid: 29362936
[39]
Rando R . Nature, 1974,250:586. https://www.ncbi.nlm.nih.gov/pubmed/4210878

doi: 10.1038/250586a0 pmid: 4210878
[40]
Cornell N , Zuurendonk P , Kerich M , Straight C . Biochem. J., 1984,220:707. https://www.ncbi.nlm.nih.gov/pubmed/6466297

doi: 10.1042/bj2200707 pmid: 6466297
[41]
Miles E W . Biochem. Bioph. Res. Co., 1975,66:94.
[42]
Torrigiani P , Bregoli A M , Ziosi V , Scaramagli S , Ciriaci T , Rasori A , Biondi S , Costa G . Postharvest. Biol. Tec., 2004,33:293.
[43]
Stohlmeyer M M , Tanaka H , Wandless T J . J. Am. Chem. Soc., 1999,121:6100.
[44]
Sai H , Ogiku T , Ohmizu H . Cheminform, 2003,2003:201.
[45]
Shangguan N , Joullie M . Tetrahedron Lett., 2009,50:6748. https://www.ncbi.nlm.nih.gov/pubmed/20802791

doi: 10.1016/j.tetlet.2009.09.072 pmid: 20802791
[46]
Monteiro L S , Oliveira S , Paiva-Martins F , Ferreira P M T , Pereira D M , Andrade P B , Valentão P . Tetrahedron, 2017,73:6199.
[47]
Obara N , Watanabe T , Asakawa T , Kan T , Tanaka T . Synlett, 2018,29:1639. http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1610026

doi: 10.1055/s-0037-1610026
[48]
Hoyt S B , London C , Wyvratt M J , Fisher M H , Cashen D E , Felix J P , Garcia M L , Li X , Lyons K A , Euan Macintyre D , Martin W J , Priest B T , Smith M M , Warren V A , Williams B S , Kaczorowski G J , Parsons W H . Bioorg. Med. Chem. Lett., 2008,18:1963. c1ccd531-fa7b-4f57-b694-9f229ec6f9c1 https://www.ncbi.nlm.nih.gov/pubmed/18289851

doi: 10.1016/j.bmcl.2008.01.123 pmid: 18289851
[49]
Churcher I , Williams S , Kerrad S , Harrison T , Castro J L , Shearman M S , Lewis H D , Clarke E E , Wrigley J D , Beher D . J. Mater. Chem., 2003,46:2275.
[50]
Lauffer D J , Mullican M D . Bioorg. Med. Chem. Lett., 2002,12:1225. https://www.ncbi.nlm.nih.gov/pubmed/11934593

doi: 10.1016/s0960-894x(02)00107-5 pmid: 11934593
[51]
Kawasaki D , Emori Y , Eta R , Iino Y , Hamano H , Yoshinaga K , Tanaka T , Takei M , Watson S A . Cancer Chemoth Pharm, 2008,61:883.
[52]
Poisel H , Schmidt U . Angew. Chem. Int. Ed. Engl., 1976,15:294. https://www.ncbi.nlm.nih.gov/pubmed/820218

doi: 10.1002/anie.197602942 pmid: 820218
[53]
Kolasa T . Synthesis, 1983,1983:539.
[54]
Schmidt U , Griesser H , Leitenberger V , Lieberknecht A , Mangold R , Meyer R , Riedl B . Synthesis, 1992,1992:487.
[55]
Saavedra C J , Alicia B , Rosendo H . Org. Lett., 2012,14:3788. https://pubs.acs.org/doi/10.1021/ol301676z

doi: 10.1021/ol301676z pmid: 22783874
[56]
Sarciaux M , Pantel L , Midrier C , Serri M , Gerber C , Marcia De Figueiredo R , Campagne J M , Villain-Guillot P , Gualtieri M , Racine E . J. Med. Chem., 2018,61:7814. https://www.ncbi.nlm.nih.gov/pubmed/30086230

doi: 10.1021/acs.jmedchem.8b00790 pmid: 30086230
[57]
Xu F , Zacuto M , Yoshikawa N , Desmond R , Hoerrner S , Itoh T , Journet M , Humphrey G R , Cowden C , Strotman N , Devine P . J. Org. Chem., 2010,75:7829. https://www.ncbi.nlm.nih.gov/pubmed/20954694

doi: 10.1021/jo101704b pmid: 20954694
[58]
Azuma H , Okano K , Fukuyama T , Tokuyama H . Org. Synth., 2003,88:152.
[59]
König B , Bonauer C , Walenzyk T . Synthesis, 2006,2006:1.
[60]
Tubaro M , Fedrigo M A , Cativiela C , Jimenez A I , Traldi P . Rapid Commun. Mass. Sp., 2003,17:107.
[61]
Topuzyan V O , Tosunyan S R , Chshmarityan S G , Paronikyan R V . Pharm. Chem. J., 2018,51:877.
[62]
Nagano T , Kinoshita H . B. Chem. Soc. Jpn., 2000,73:1605.
[63]
Shiraishi Y , Yamauchi H , Takamura T , Kinoshita H . B. Chem. Soc. Jpn., 2004,77:2219.
[64]
Baranov M S , Lukyanov K A , Yampolsky I V . Russ. J. Bioorg. Chem., 2013,39:223.
[65]
Yasuno Y , Nishimura A , Yasukawa Y , Karita Y , Ohfune Y , Shinada T . . Chem. Commun. (Camb.), 2016,52:1478. https://www.ncbi.nlm.nih.gov/pubmed/26658962

doi: 10.1039/c5cc08458j pmid: 26658962
[66]
Kuranaga T , Sesoko Y , Sakata K , Maeda N , Hayata A , Inoue M . J. Am. Chem. Soc., 2013,135:5467. https://www.ncbi.nlm.nih.gov/pubmed/23496281

doi: 10.1021/ja401457h pmid: 23496281
[67]
Trost B M , Dake G R . J. Am. Chem. Soc., 1997,119:7595. https://pubs.acs.org/doi/10.1021/ja971238z

doi: 10.1021/ja971238z
[68]
Zhou Q F , Wu Q P , Xue S . Tetrahedron Lett., 2008,49:7027. 12d56504-b93b-4d1a-8f90-b2be985ef1fa http://www.sciencedirect.com/science/article/pii/S0040403908018017

doi: 10.1016/j.tetlet.2008.09.132
[69]
Xi Y K , Zhang H , Li R X , Kang S Y , Li J , Li Y . Chemistry (Easton), 2019,25:3005.
[70]
Zhang M , Wang W L , Fang Y C , Zhu T J , Gu Q Q , Zhu W M . J. Nat. Prod., 2008,71:985. https://www.ncbi.nlm.nih.gov/pubmed/18505285

doi: 10.1021/np700737g pmid: 18505285
[71]
Schöllkopf U , Gerhart F , Schröder R , Hoppe D . Justus Liebigs Ann. Chem., 1973,766:116.
[72]
Enders D , Chen Z X , Raabe G . Synthesis, 2005,2005:306. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2004-834922

doi: 10.1055/s-2004-834922
[73]
Tolmachova N A , Kondratov I S , Dolovanyuk V G , Pridma S O , Chernykh A V , Daniliuc C G , Haufe G . Chem. Commun. (Camb.), 2018,54:9683. https://www.ncbi.nlm.nih.gov/pubmed/30101963

doi: 10.1039/c8cc05912h pmid: 30101963
[74]
Fujie A , Muramatsu H , Yoshimura S , Hashimoto M , Shigematsu N , Takase S . J. Antibiot., 2001,54:588. https://www.ncbi.nlm.nih.gov/pubmed/11560378

doi: 10.7164/antibiotics.54.588 pmid: 11560378
[75]
Hashizume H , Igarashi M , Hattori S , Hori M , Hamada M , Takeuchi T . J. Antibiot., 2001,54:1054. https://www.ncbi.nlm.nih.gov/pubmed/11858660

doi: 10.7164/antibiotics.54.1054 pmid: 11858660
[76]
Davies D T , Goodall K , Kapur N , O’brien M , Parsons A F . Synthetic Commun., 1997,27:3815.
[77]
Nakamura Y , Ito A , Shin C G . B. Chem. Soc. Jpn., 1994,67:2151. http://www.journal.csj.jp/doi/10.1246/bcsj.67.2151

doi: 10.1246/bcsj.67.2151
[78]
Shin C G , Ikeda M , Yonezawa Y . Agric. and Biol. Chem., 2014,49:2243.
[79]
Singjunla Y , Colombano S , Baudoux J , Rouden J . Tetrahedron, 2016,72:2369.
[80]
Liu B J , Zhang Y , Huang G , Zhang X , Niu P , Wu J , Yu W , Chang J . Org. Biomol. Chem., 2014,12:3912. https://www.ncbi.nlm.nih.gov/pubmed/24789674

doi: 10.1039/c4ob00309h pmid: 24789674
[81]
Chen D J , Guo L , Liu J , Kirtane S , Cannon J F , Li G . Org. Lett., 2005,7:921. https://www.ncbi.nlm.nih.gov/pubmed/15727475

doi: 10.1021/ol050002u pmid: 15727475
[82]
Sun H , Zhang G , Zhi S , Han J , Li G , Pan Y . Org. Biomol. Chem., 2010,8:4236. https://www.ncbi.nlm.nih.gov/pubmed/20714671

doi: 10.1039/c0ob00283f pmid: 20714671
[83]
Shultz C S , Dreher S D , Ikemoto N , Williams J M , Grabowski E J , Krska S W , Sun Y , Dormer P G , Dimichele L . Org. Lett., 2005,7:3405. https://www.ncbi.nlm.nih.gov/pubmed/16048303

doi: 10.1021/ol050869s pmid: 16048303
[84]
Espinosa M , García-Ortiz A , Blay G , Cardona L , Muñoz M C , Pedro J R . RSC Advances, 2016,6:15655.
[85]
Kaur H , Heapy A M , Brimble M A . Org. Biomol. Chem., 2011,9:5897. https://www.ncbi.nlm.nih.gov/pubmed/21743891

doi: 10.1039/c1ob05777d pmid: 21743891
[86]
王英杰(Wang Y J), 张振锋(Zhang Z F), 张万斌(Zhang W B). 有机化学(Chinese J. Org. Chem.), 2015,35:528.
[87]
Li W R , Peng S Z . Tetrahedron Lett., 1998,39:7373.
[88]
Kublitskii V S , Stepanov A E , Trukhan V M . Russ. J. Org. Chem., 2008,44:933.
[89]
Huy P , NeudöRfl J R M , Schmalz H G N . Org. Lett., 2010,13:216. https://www.ncbi.nlm.nih.gov/pubmed/21158419

doi: 10.1021/ol102613z pmid: 21158419
[90]
Williams R M , Fegley G J . J. Am. Chem. Soc., 1991,113:8796. https://pubs.acs.org/doi/abs/10.1021/ja00023a030

doi: 10.1021/ja00023a030
[91]
Palacios F , Vicario J , Aparicio D . Eur. J. Org. Chem., 2006,2006:2843. http://doi.wiley.com/10.1002/%28ISSN%291099-0690

doi: 10.1002/(ISSN)1099-0690
[92]
Mandal A K , Hines J , Kuramochi K , Crews C M . Bioorg. Med. Chem. Lett., 2005,15:4043. f4099a7b-9558-45b8-b0b3-760d0d14d1de http://www.sciencedirect.com/science/article/pii/S0960894X0500764X

doi: 10.1016/j.bmcl.2005.06.020 pmid: 15993592
[93]
Baldwin J E , Christie M A , Haber S B , Kruse L I . J. Am. Chem. Soc., 1976,98:3045. https://www.ncbi.nlm.nih.gov/pubmed/1262636

doi: 10.1021/ja00426a077 pmid: 1262636
[94]
Petasis N A , Zavialov I A . J. Am. Chem. Soc., 1997,119:445.
[95]
Alexander P A , Marsden S P , Munoz Subtil D M , Reader J C . Org. Lett., 2005,7:5433. https://www.ncbi.nlm.nih.gov/pubmed/16288524

doi: 10.1021/ol052139q pmid: 16288524
[96]
Armstrong A , Challinor L , Moir J H . Angew. Chem. Int. Ed. Engl., 2007,46:5369. https://www.ncbi.nlm.nih.gov/pubmed/17562549

doi: 10.1002/anie.200701459 pmid: 17562549
[97]
Afzali-Ardakani A , Rapoport H . J. Org. Chem., 1980,45:4817.
[98]
Patel S K , Long T E , . Tetrahedron Lett., 2009,50:5067.
[99]
Küchenthal C H , Migenda J , Polednia M , Maison W . Amino Acids, 2010,39:443. https://www.ncbi.nlm.nih.gov/pubmed/20108010

doi: 10.1007/s00726-009-0460-3 pmid: 20108010
[100]
黄成美(Huang C M) . 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2009.
[101]
Hanessian S , Sahoo S P . Tetrahedron Lett., 1984,25:1425.
[102]
Keith D D , Tortora J A , Yang R . J. Org. Chem., 1978,43:3711.
[103]
Alks V , Sufrin J R . Tetrahedron Lett., 1990,31:5257.
[104]
Berkowitz D B , Charette B D , Karukurichi K R , McFadden J M . Tetrahedron Asymmetry, 2006,17:869. https://www.ncbi.nlm.nih.gov/pubmed/29977107

doi: 10.1016/j.tetasy.2006.02.026 pmid: 29977107
[105]
Yonezawa Y , Shimizu K , Yoon K S , Shin C G . Synthesis, 2000,2000:634. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2000-6382

doi: 10.1055/s-2000-6382
[106]
Reginato G , Meffre P , Gaggini F . Amino Acids, 2005,29:81. f032a018-5938-413a-8c24-77789f6cfb36 http://www.springerlink.com/content/x7174p4957730646/

doi: 10.1007/s00726-005-0184-y pmid: 15812682
[107]
Berkowitz D B , Maiti G . Org. Lett., 2004,6:2661. https://www.ncbi.nlm.nih.gov/pubmed/15281738

doi: 10.1021/ol049159x pmid: 15281738
[108]
Gahungu M , Arguelles-Arias A , Fickers P , Zervosen A , Joris B , Damblon C , Luxen A . Bioorg. Med. Chem., 2013,21:4958. https://www.ncbi.nlm.nih.gov/pubmed/23891162

doi: 10.1016/j.bmc.2013.06.064 pmid: 23891162
[109]
Rose N G , Blaskovich M A , Wong A , Lajoie G A . Tetrahedron, 2001,57:1497. https://linkinghub.elsevier.com/retrieve/pii/S0040402000011467

doi: 10.1016/S0040-4020(00)01146-7
[110]
Fishlock D , Guillemette J G , Lajoie G A . J. Org. Chem., 2002,67:2352. https://www.ncbi.nlm.nih.gov/pubmed/11925253

doi: 10.1021/jo016242e pmid: 11925253
[111]
Berkowitz D B , Smith M K . Synthesis, 1996,1996:39. https://www.ncbi.nlm.nih.gov/pubmed/29962541

doi: 10.1055/s-1996-4177 pmid: 29962541
[112]
Pellegrini N , Schmitt M , Guery S , Bourguignon J J . Tetrahedron Lett., 2002,43:3243.
[113]
Tiwari S K , Schneider A , Koep S , Gais H J . Tetrahedron Lett., 2004,45:8343.
[114]
Clayden J , Knowles F E , Menet C J . Tetrahedron Lett., 2003,44:3397.
[115]
Li Y , Xu M H . Org. Lett., 2012,14:2062. https://www.ncbi.nlm.nih.gov/pubmed/22480132

doi: 10.1021/ol300581n pmid: 22480132
[116]
袁硕(Yuan S), 孙德群(Sun D Q). 化学进展(Progress in Chemistry), 2016,28:1084.
[117]
Rajesh S , Banerji B , Iqbal J . J. Org. Chem., 2002,67:7852. https://www.ncbi.nlm.nih.gov/pubmed/12398513

doi: 10.1021/jo010981d pmid: 12398513
[118]
Lorion M M , Gasperini D , Oble J , Poli G . Org. Lett., 2013,15:3050. https://www.ncbi.nlm.nih.gov/pubmed/23734985

doi: 10.1021/ol401234v pmid: 23734985
[119]
Wang X M , Guo P , Han Z , Wang X , Wang Z , Ding K . J. Am. Chem. Soc., 2013,136:405. https://www.ncbi.nlm.nih.gov/pubmed/24328176

doi: 10.1021/ja410707q pmid: 24328176
[120]
Paira M , Mandal S K , Roy S C . Tetrahedron Lett., 2008,49:2432.
[121]
Ghosh S , Dey R , Chattopadhyay K , Ranu B C . Tetrahedron Lett., 2009,50:4892.
[122]
Docekal V , Simek M , Dracinsky M , Vesely J . Chemistry (Easton), 2018,24:13441.
[123]
Buchholz R , Hoffmann H M R . Helv. Chim. Acta, 1991,74:1213.
[124]
Martelli G , Orena M , Rinaldi S . Eur. J. Org. Chem., 2011,2011:7199.
[125]
Tanaka T , Muto T , Maruoka H , Imajo S , Fukami H , Tomimori Y , Fukuda Y , Nakatsuka T . Bioorg. Med. Chem. Lett., 2007,17:3431. https://www.ncbi.nlm.nih.gov/pubmed/17419055

doi: 10.1016/j.bmcl.2007.03.038 pmid: 17419055
[126]
Tanaka T , Sugawara H , Maruoka H , Imajo S , Muto T . Bioorg. Med. Chem., 2013,21:4233. https://www.ncbi.nlm.nih.gov/pubmed/23719288

doi: 10.1016/j.bmc.2013.04.079 pmid: 23719288
[127]
Bierbaum D J , Seebach D . Austr. J. Chem., 2004,57:859. http://www.publish.csiro.au/?paper=CH04052

doi: 10.1071/CH04052
[128]
Gajda A , Gajda T . J. Org. Chem., 2008,73:8643. https://www.ncbi.nlm.nih.gov/pubmed/18821802

doi: 10.1021/jo801616d pmid: 18821802
[129]
Milcent T , Hao J , Kawada K , Soloshonok V A , Ongeri S , Crousse B . Eur. J. Org. Chem., 2014,2014:3072.
[130]
Kothapalli Y , Puthukanoori R K , Ranga M , Alapati S R . Tetrahedron Lett., 2017,58:3831.
[131]
Reeve C D , Crout D H , Cooper K , Fray M J . Tetrahedron Asymmetry, 1992,3:785.
[132]
Jeong J U , Chen X , Rahman A , Yamashita D S , Luengo J I . Org. Lett., 2004,6:1013. https://www.ncbi.nlm.nih.gov/pubmed/15012088

doi: 10.1021/ol049921v pmid: 15012088
[133]
Bruneau C , Renaud J L , Jerphagnon T . Coordin. Chem. Rev., 2008,252:532.
[134]
Liu X , Cheng R , Zhao F , Zhang-Negrerie D , Du Y , Zhao K . Org. Lett., 2012,14:5480. https://www.ncbi.nlm.nih.gov/pubmed/23098266

doi: 10.1021/ol3025583 pmid: 23098266
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.