中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 46-54 DOI: 10.7536/PC190528 Previous Articles   Next Articles

Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting

Lijun Guo1,2, Rui Li1, Jianxin Liu1, Qing Xi1, Caimei Fan1,**()   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024,China
    2. Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
  • Received: Online: Published:
  • Contact: Caimei Fan
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21808151); National Natural Science Foundation of China(21676178); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(STIP)(2019L0138); Natural Science Foundation of Shanxi Province,China(201901D211100)
Richhtml ( 50 ) PDF ( 1253 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalytic hydrogen generation, with great potential in clean energy, is an effective way to convert solar energy into hydrogen energy. The process of photocatalytic hydrogen generation mainly includes the generation and migration of electron-hole pairs as well as the REDOX reaction at the surface-active sites. In this process, due to the combination of electron-hole pairs and the limitation of surface-active sites, the electrons and holes cannot completely migrate on the catalyst surface and participate in the REDOX reaction, so hydrogen evolution efficiency is reduced. Thus for the purpose of restraining recombination of photogenerated electronic-hole and increasing surface active sites, from the two aspects of regulating the internal characteristics and external catalyst properties, the current common manipulation measures on catalyst particle size, morphology, crystal and surface active sites are analyzed, and the ways of constructing heterogeneous structure are discussed. The research results by the means of loading cocatalyst in recent years are summarized. By means of exploring how these factors influence the efficiency of catalyst activity of hydrogen evolution, ways of improving the efficiency of the hydrogen evolution method are summarized. Finally, the future research direction of photocatalytic hydrogen production is prospected, hoping to provide reference for improving the efficiency of photocatalytic hydrogen production.

Fig. 1 The processes of photocatalytic water splitting
Fig. 2 (a) Structural model of the resultant MoS2/g-CN layered junctions[5], (b) 3D topology of Rh/3DGR[6]
Fig. 3 (a) Different TiO2 crystal facets exposed[13];(b)simultaneous photo-deposition of metal and metal oxides on the {010} and {110} facets[14]
Fig. 4 SEM of MoS2@Cu2O[18]
Fig. 5 The disordered structure in oxygen-incorporated MoS2 ultrathin nanosheets[19]
Fig. 6 The preparation of the titanate-anatase heterostructure with surface disordered shell[23]
Fig. 7 Multiple heterojunctions of the ZnMoS4/ZnO/CuS[36]
Fig. 8 (a) TEM of 1D CdS@MoS2,(b) comparison of the photocatalytic H2 production activity of different samples for 4 h[42]
Fig. 9 (a) TEM of CeO2- x S x @CdS, (b) comparison of the H2 evolution rate of CeO2, CeO2- x S x , CdS and CeO2- x S x @CdS photocatalysts[43]
Fig. 10 Cross-section of SrTiO3@Mo2C specimen[44]
Table 1 Examples of enhancing photocatalytic water splitting activity by different strategies
Cocatalyst1 Cocatalyst2 Photocatalyst Hydrogen production rate Quantum efficiency Reason for the increased
activity
ref
Pt Ti3C2 g-C3N4 5.1 mmol·h-1·g-1 heterojunction 60
Pt CdS 3DOM-SrTiO3 57.9 mmol·h-1·g-1 3D core-shell 61
Pt NiS La5Ti2Cu(S1- x Se x )5O7 1.8%(420 nm) Pt’s low overpotential 50
PtPd CdS 1837 μmol·h-1 alloy 62
Pd TiO2 Pd{111}facet 63
Pd TiO2 ZSM-5 1148 μmol·g-1·h-1 Pd as active sites 52
PdPt Ta2O5 21 529.52 μmol·g-1·h-1 16.5%(254 nm) alloy 64
Pd Ag g-C3N4 1250 μmol·h-1·g-1 metallic character of Pd and Ag 65
Au TiO2-g-C3N4 350 μmol·h-1·g-1 heterojunction 66
Au CdS 6385 μmol·h-1·g-1 Au’s low overpotential 51
Au CdS/ZnS-RGO 9.96 mmol·h-1·g-1 heterojunction 67
MoS2 CdS 381.6 μmol·h-1 rich defects of MoS2-NS 68
MoS2 CdS 28.5%(420 nm) core-shell 42
MoS2 UiO-66/CdS 650 μmol·h-1 surface modification 69
MoOx CdS NWs 573.6 μmol·h-1 13.4%(420 nm) MoO x supersmall clusters 59
MoS2 GO TiO2 165.3 μmol·h-1 lamellar structure 70
AuPt AuPtAg TiO2 138.5 μL·h-1 alloy 66
NiCu TiO2 6.04 μL·h-1·cm-2 alloy 71
NiMo MIL-101 740.2 μmol·h-1 75.7%(520 nm) alloy 48
Ni MOF-5 30.22 mmol·h-1·g-1 16.7%(430 nm) small size Ni{111}facet 55
Co GO 445.65 μmol·h-1 17.4%(520 nm) Co{101}facet 72
CoO CdS 3.5 mmol·g-1·h-1 core-shell 56
Co3O4 TiO2(B) 6359 μmol·h-1·g-1 10.9% heterojunction 73
Co2P RGO 1068 μmol·h-1 33.3%(520 nm) surface defect of Co 57
TiO2(B) anatase 29 mmol·h-1·g-1 heterojunction 74
Bi2S3 MoS2QDs 17.7 mmol·h-1·g-1 active sites S exposed 75
[1]
Guo Y Q , Dai B H , Peng J , Wu C Z , Xie Y . J. Am. Chem. Soc., 2019,141(2):723. https://www.ncbi.nlm.nih.gov/pubmed/30481464

doi: 10.1021/jacs.8b09821 pmid: 30481464
[2]
Bai S , Jiang W Y , Li Z Q , Xiong Y J . ChemNanoMat, 2015,1(4):223.
[3]
Zhu E B , Wang S Y , Yan X C , Sobani M , Ruan L Y , Wang C , Liu Y , Duan X F , Heinz H , Huang Y . J. Am. Chem. Soc., 2018,141(4):1498. https://www.ncbi.nlm.nih.gov/pubmed/30475606

doi: 10.1021/jacs.8b08023 pmid: 30475606
[4]
Liu Z M , Liu G L , Hong X L . Acta Phys.-Chim. Sin., 2019,35:215.
[5]
Hou Y , Laursen A B , Zhang J , Zhang G , Zhu Y , Wang X , Dahl S , Chorkendorff I . Angew. Chem. Int. Ed., 2013,52(13):3621. https://www.ncbi.nlm.nih.gov/pubmed/23427144

doi: 10.1002/anie.201210294 pmid: 23427144
[6]
Zhen W L , Gao H B , Lv G X , Chinese J . Inorg. Chem., 2018,1(34):20.
[7]
Ong W J , Tan L L , Chai S P , Yong S T , Mohamed A R . Nanoscale, 2014,6(4):1946. https://www.ncbi.nlm.nih.gov/pubmed/24384624

doi: 10.1039/c3nr04655a pmid: 24384624
[8]
Yang H G , Sun C H , Qiao S Z , Zou J , Liu G , Smith S C , Cheng H M , Lu G Q . Nature, 2008,453(7195):638. https://doi.org/10.1038/nature06964

doi: 10.1038/nature06964 pmid: 18509440
[9]
Yu J G , Dai G P , Xiang Q J , Jaroniec M . J. Mater. Chem., 2011,21(4):1049. http://xlink.rsc.org/?DOI=C0JM02217A

doi: 10.1039/C0JM02217A
[10]
Gao K . Phys. Status Solidi B, 2007,244(7):2597.
[11]
Marković N M , Grgur B N , Ross P N . J. Phy. Chem. B, 1997,101(27):5405.
[12]
Popczun E J , Roske C W , Read C G , Crompton J C , McEnaney J M , Callejas J F , Lewis N S , Schaak R E . J. Mater. Chem. A, 2015,3(10):5420.
[13]
Liu L C , Liu Z , Liu A N , Gu X R , Ge C Y , Gao F , Dong L . ChemSusChem, 2014,7(2):618. https://www.ncbi.nlm.nih.gov/pubmed/24323576

doi: 10.1002/cssc.201300941 pmid: 24323576
[14]
Li R G , Zhang F X , Wang D , Yang J X , Li M X , Zhu J , Zhou X , Han H X , Li C . Nat. Commun., 2013,4:1432. https://www.ncbi.nlm.nih.gov/pubmed/23385577

doi: 10.1038/ncomms2401 pmid: 23385577
[15]
Jaramillo T F , Jorgensen K P , Bonde J , Nielsen J H , Horch S , Chorkendorff I . Science, 2007,317(5834):100. https://www.ncbi.nlm.nih.gov/pubmed/17615351

doi: 10.1126/science.1141483 pmid: 17615351
[16]
Kong D , Wang H , Cha J J , Pasta M , Koski K J , Yao J , Cui Y . Nano Lett., 2013,13(3):1341. https://www.ncbi.nlm.nih.gov/pubmed/23387444

doi: 10.1021/nl400258t pmid: 23387444
[17]
Yin Y , Han J C , Zhang Y M , Zhang X H , Xu P , Yuan Q , Samad L , Wang X J , Wang Y , Zhang Z H , Zhang P , Cao X Z , Song B , Jin S . J. Am. Chem. Soc., 2016,138(25):7965. https://www.ncbi.nlm.nih.gov/pubmed/27269185

doi: 10.1021/jacs.6b03714 pmid: 27269185
[18]
Zhao Y F , Yang Z Y , Zhang Y X , Jing L , Guo X , Ke Z T , Hu P , Wang G X , Yan Y M , Sun K N . J. Phys. Chem. C, 2014,118(26):14238.
[19]
Xie J F , Zhang J J , Li S , Grote F , Zhang X D , Zhang H , Wang R X , Lei Y , Pan B C , Xie Y . J. Am. Chem. Soc., 2014,136(4):1680. https://pubs.acs.org/doi/10.1021/ja4129636

doi: 10.1021/ja4129636
[20]
Lin L X , Huang J T , Li X F , Abass M A , Zhang S W . Appl. Catal. B-Environ., 2017,203:615.
[21]
Lv M L , Ni S , Wang Z , Cao T C , Xu X X . Int. J. Hydrogen Energ., 2016,41(3):1550.
[22]
Fan C Y , Fu X X , Shi L , Yu S Q , Qian G D , Wang Z Y . J. Alloy. Compd., 2017,703:96.
[23]
Cai J M , Zhu Y M , Liu D S , Meng M , Hu Z P , Jiang Z . ACS Catal., 2015,5(3):1708.
[24]
Marcinkowski M D , Jewell A D , Stamatakis M , Boucher M B , Lewis E A , Murphy C J , Kyriakou G , Sykes E C H . Nat. Mater., 2013,12(6):523. https://www.ncbi.nlm.nih.gov/pubmed/23603849

doi: 10.1038/nmat3620 pmid: 23603849
[25]
Chen Q S , Vidal-Iglesias F J , Solla-Gullón J , Sun S G , Feliu J M . Chem. Sci., 2012,3(1):136. 9f3a4410-5d27-41eb-bdeb-69bac4a2c285 http://dx.doi.org/10.1039/c1sc00503k

doi: 10.1039/c1sc00503k
[26]
Wu Q P , Huang F , Zhao M S , Xu J , Zhou J C , Wang Y S . Nano Energy, 2016,24:63.
[27]
Khan S , Cho H , Kim D H , Han S S , Lee K H , Cho S H , Song T , Choi H . . Appl. Catal. B-Environ., 2017,206:520.
[28]
Dong F , Xiong T , Yan S , Wang H Q , Sun Y J , Zhang Y X , Huang H W , Wu Z B . J.Catal., 2016,344:401.
[29]
Salvador P , Garcia Gonzalez M L , Munoz F . J. Phys. Chem., 1992,96(25):10349.
[30]
Shi J Y , Cui H N , Liang Z X , Lu X H , Tong Y X , Su C Y , Liu H . Energy Environ. Sci., 2011,4(2):466.
[31]
Zhang X Y , Zhao Z , Zhang W W , Zhang G Q , Qu D , Miao X , Sun S R , Sun Z C . Small, 2016,12(6):793. https://www.ncbi.nlm.nih.gov/pubmed/26691211

doi: 10.1002/smll.201503067 pmid: 26691211
[32]
Wei Z , Benlin D , Fengxia Z , Xinyue T , Jiming X , Lili Z , Shiyin L , Leung D Y C , Sun C . Appl. Catal. B -Environ., 2018,229:171.
[33]
Lu H J , Hao Q , Chen T , Zhang L H , Chen D M , Ma C , Yao W Q , Zhu Y F . Appl. Catal. B-Environ., 2018,237:59.
[34]
Xie T P , Liu Y , Wang H Q , Wu Z B . Appl. Surf. Sci., 2018,444:320. https://linkinghub.elsevier.com/retrieve/pii/S0169433218307414

doi: 10.1016/j.apsusc.2018.03.072
[35]
Su F L , Lu J W , Tian Y , Ma X B , Gong J L . Phys. Chem. Chem. Phys., 2013,15(29):12026. https://www.ncbi.nlm.nih.gov/pubmed/23728221

doi: 10.1039/c3cp51291f pmid: 23728221
[36]
Lim W Y , Wu H , Lim Y F , Ho G W . J. Mater. Chem. A, 2018,6(24):11416.
[37]
Li A , Zhu W J , Li C C , Wang T , Gong J L . Chem. Soc. Rev., 2019,48(7):1874. https://www.ncbi.nlm.nih.gov/pubmed/30525133

doi: 10.1039/c8cs00711j pmid: 30525133
[38]
Liu L , Ding L , Liu Y G , An W J , Lin S L , Liang Y H , Cui W Q . Appl. Catal. B-Environ., 2017,201:92.
[39]
Liang Y H , Shang R , Lu J R , Liu L , Hu J S , Cui W Q . ACS Appl. Mater. Inter., 2018,10(10):8758. https://www.ncbi.nlm.nih.gov/pubmed/29470053

doi: 10.1021/acsami.8b00198 pmid: 29470053
[40]
Guo N , Zeng Y , Li H Y , Xu X J , Yu H W , Han X R . J. Hazard. Mater., 2018,353:80. https://www.ncbi.nlm.nih.gov/pubmed/29635177

doi: 10.1016/j.jhazmat.2018.03.044 pmid: 29635177
[41]
Ranno L , Forno S D , Lischner J . npj Comput. Mater., 2018,4(1):31.
[42]
Han B , Liu S Q , Zhang N , Xu Y J , Tang Z R . Appl. Catal. B-Environ., 2017,202:298.
[43]
Zheng N C , Ouyang T , Chen Y B , Wang Z , Chen D Y , Liu Z Q . Catal. Sci. Technol., 2019,9(6):1357.
[44]
Yue X Z , Yi S S , Wang R W , Zhang Z T , Qiu S L . Nano Energy, 2018,47:463.
[45]
Chen P C , Liu M H , Du J S , Meckes B , Wang S Z , Lin H X , Dravid V P , Wolverton C , Mirkin C A . Science, 2019,363(6430):959. https://www.ncbi.nlm.nih.gov/pubmed/30819959

doi: 10.1126/science.aav4302 pmid: 30819959
[46]
Hossain S , Niihori Y , Nair L V , Kumar B , Kurashige W , Negishi Y . Acc. Chem. Res., 2018,51(12):3114. https://www.ncbi.nlm.nih.gov/pubmed/30460847

doi: 10.1021/acs.accounts.8b00453 pmid: 30460847
[47]
Greeley J , Jaramillo T F , Bonde J , Chorkendorff I B , Norskov J K . Nat. Mater., 2006,5(11):909. https://www.ncbi.nlm.nih.gov/pubmed/17041585

doi: 10.1038/nmat1752 pmid: 17041585
[48]
Zhen W L , Gao H B , Tian B , Ma J T , Lu G X . ACS Appl. Mater. Inter., 2016,8(17):10808. https://www.ncbi.nlm.nih.gov/pubmed/27070204

doi: 10.1021/acsami.5b12524 pmid: 27070204
[49]
Wang J X , Zhang Y , Capuano C B , Ayers K E . Sci. Rep., 2015,5:12220. https://www.ncbi.nlm.nih.gov/pubmed/26191776

doi: 10.1038/srep12220 pmid: 26191776
[50]
Nandy S , Hisatomi T , Ma G , Minegishi T , Katayama M , Domen K . J. Mater. Chem. A, 2017,5(13):6106.
[51]
Xu J , Yang W M , Huang S J , Yin H , Zhang H , Radjenovic P , Yang Z L , Tian Z Q , Li J F . Nano Energy, 2018,49:363.
[52]
Enzweiler H , Yassue-Cordeiro P H , Schwaab M , Barbosa-Coutinho E , Olsen Scaliante M H N , Fernandes N R C . Int. J. Hydrogen. Energ., 2018,43(13):6515.
[53]
Fang X Z , Shang Q C , Wang Y , Jiao L , Yao T , Li Y F , Zhang Q , Luo Y , Jiang H L . Adv. Mater., 2018,30(7):1705112.
[54]
Wang P , Sheng Y , Wang F Z , Yu H G . Appl. Catal. B-Environ., 2018,220:561.
[55]
Zhen W , Ma J , Lv G X . Appl. Catal. B-Environ., 2016,190:12.
[56]
Liu Y , Ding S , Shi Y , Liu X , Wu Z , Jiang Q , Zhou T , Liu N , Hu J . . Appl. Catal. B-Environ., 2018,234:109. https://linkinghub.elsevier.com/retrieve/pii/S0926337318303667

doi: 10.1016/j.apcatb.2018.04.037
[57]
Tian B , Li Z , Zhen W , Lv G X . J. Phys. Chem. C, 2016,120(12):6409.
[58]
Zhao N , Kong L G , Dong Y M , Wang G L , Wu X M , Jiang P P . ACS. Appl. Mater. Inter., 2018,10(11):9522. https://www.ncbi.nlm.nih.gov/pubmed/29482318

doi: 10.1021/acsami.8b01590 pmid: 29482318
[59]
Zhang H B , Zhang P , Qiu M , Dong J C , Zhang Y F , Lou X W D . Adv. Mater., 2019,31(6):1804883. https://www.ncbi.nlm.nih.gov/pubmed/30556181

doi: 10.1002/adma.201804883 pmid: 30556181
[60]
An X Q , Wang W , Wang J P , Duan H Z , Shi J T , Yu X L . Phys. Chem. Chem. Phys., 2018,20(16):11405. https://www.ncbi.nlm.nih.gov/pubmed/29645039

doi: 10.1039/c8cp01123k pmid: 29645039
[61]
Chang Y , Xuan Y , Zhang C X , Hao H , Yu K , Liu S X . Catal. Today., 2019,327:315. https://linkinghub.elsevier.com/retrieve/pii/S0920586118304784

doi: 10.1016/j.cattod.2018.04.033
[62]
Luo M H , Lu P , Yao W F , Huang C P , Xu Q J , Wu Q , Kuwahara Y , Yamashita H . ACS. Appl. Mater. Inter., 2016,8(32):20667. https://www.ncbi.nlm.nih.gov/pubmed/27439590

doi: 10.1021/acsami.6b04388 pmid: 27439590
[63]
Cao S W , Li H , Li Y , Zhu B C , Yu J G . ACS Sustain. Chem. Eng., 2018,6(5):6478. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b00259

doi: 10.1021/acssuschemeng.8b00259
[64]
Yu X , Liu G B , Li W , An L , Li Z H , Liu J W , Hu P A . Int. J. Hydrogen. Energ., 2018,43(17):8232.
[65]
Majeed I , Manzoor U , Kanodarwala F K , Nadeem M A , Hussain E , Ali H , Badshah A , Stride J A , Nadeem M A . Catal. Sci. Technol., 2018,8(4):1183.
[66]
Marchal C , Cottineau T , Méndez-Medrano M G , Colbeau-Justin C , Caps V , Keller V . Adv. Energy. Mater., 2018,8(14).
[67]
Kai S S , Xi B J , Liu X L , Ju L , Wang P , Feng Z Y , Ma X J , Xiong S L . J. Mater. Chem. A, 2018,6(7):2895. http://xlink.rsc.org/?DOI=C7TA10958J

doi: 10.1039/C7TA10958J
[68]
Xiong J H , Liu Y H , Wang D K , Liang S J , Wu W M , Wu L . J. Mater. Chem. A, 2015,3(24):12631. http://xlink.rsc.org/?DOI=C5TA02438B

doi: 10.1039/C5TA02438B
[69]
Shen L J , Luo M B , Liu Y H , Liang R W , Jing F F , Wu L . Appl. Catal. B-Environ, 2015,166/167:445. https://linkinghub.elsevier.com/retrieve/pii/S0926337314007693

doi: 10.1016/j.apcatb.2014.11.056
[70]
Xiang Q , Yu J , Jaroniec M . J. Am. Chem. Soc., 2012,134(15):6575. 6853467f-c1f8-4ea9-8014-4cebb210c34f http://dx.doi.org/10.1021/ja302846n

doi: 10.1021/ja302846n pmid: 22458309
[71]
Spanu D , Recchia S , Mohajernia S , Tomanec O , Kment Š , Zboril R , Schmuki P , Altomare M . ACS Catal., 2018,8(6):5298. https://pubs.acs.org/doi/10.1021/acscatal.8b01190

doi: 10.1021/acscatal.8b01190
[72]
Tian B , Zhen W L , Gao H B , Zhang X Q , Li Z , Lu G X . Appl. Catal. B-Environ., 2017,203:789. https://linkinghub.elsevier.com/retrieve/pii/S0926337316308347

doi: 10.1016/j.apcatb.2016.10.070
[73]
Si J , Xiao S , Wang Y , Zhu L , Xia X , Huang Z , Gao Y . Nanoscale, 2018,10(5):2596. https://www.ncbi.nlm.nih.gov/pubmed/29354816

doi: 10.1039/c7nr07336d pmid: 29354816
[74]
Cai J M , Wang Y T , Zhu Y M , Wu M Q , Zhang H , Li X G , Jiang Z , Meng M . ACS. Appl. Mater. Inter., 2015,7(45):24987. https://pubs.acs.org/doi/10.1021/acsami.5b07318

doi: 10.1021/acsami.5b07318 pmid: 26536137
[75]
Lee W P C , Kong X Y , Tan L L , Gui M M , Sumathi S , Chai S P . Appl. Catal. B-Environ., 2018,232:117.
[1] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[2] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[3] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.