中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1474-1488 DOI: 10.7536/PC160614 Previous Articles   Next Articles

Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting

Zhang Lingfeng1,2, Hu Zhongpan1, Liu Xinying2, Yuan Zhongyong1*   

  1. 1. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China;
    2. Materials and Process Synthesis, University of South Africa, Florida Campus, Private Bag X6, Johannesburg 1710, South Africa
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21573115) and the National Research Foundation of South Africa.
PDF ( 1332 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalytic water splitting technology based on TiO2 semiconductor is a promising strategy for clean, low-cost, and environmental friendly H2 production by utilizing solar energy. The whole process includes three crucial steps:solar light harvesting to excite electron from VB to CB of TiO2, charge separation and transportation, and the catalytic reduction of H+ to H2 evolution reaction. Many progresses are achieved on the first two steps, while much less researches are concentrated on the third step to improve catalytic activity with the utilization of the cocatalysts. Noble metal Pt as cocatalyst can obviously promote the H2-producing rate in TiO2 photocatalytic system. However, it has been restricted seriously due to its limited sources and high cost. Thus, developing cheap, earth-abundant, and high active noble-metal-free cocatalysts is very significant for high efficient photocatalytic water splitting. This review summarizes the research progress on noble-metal-free cocatalysts for TiO2-based H2-evolution half reaction, including transition metals, transition metal compounds, nanocarbon materials and nanocarbon-based composites. The role of different cocatalysts in catalytic performance improving, such as, content, structure, particle size, surface area, dispersity, synthesis method of the cocatalysts, and so on, was discussed in detail. And the challenges and perspectives of the research directions are also remarked.

Contents
1 Introduction
2 Fundamentals of photocatalytic water splitting and the role of cocatalyst
2.1 Fundamental of TiO2-based photocatalyst
2.2 Process of H2 production from water splitting
2.3 The roles of cocatalysts for H2-evolution
2.4 Factors influencing the performance of cocatalysts
3 Noble-metal-free cocatalyst for H2-evolution half reactions
3.1 Transition metal cocatalysts
3.2 Transition metal compounds
3.3 Nanocarbon-based cocatalysts
3.4 Catalytic mechanism
4 Conclusion and outlook

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Tran P D, Xi L, Batabyal S K, Wong L H, Barber J, Loo J S C. Phys. Chem. Chem. Phys., 2012, 14:11596.
[3] Wang W, Liu S, Nie L, Cheng B, Yu J. Phys. Chem. Chem. Phys., 2013, 15:12033.
[4] Li L, Yan J, Wang T, Zhao Z, Zhang J, Gong J, Guan N. Nat. Commun., 2015, 6:5881.
[5] Lin H Y, Yang H C, Wang W L. Catal. Today, 2001,174:106.
[6] Wender H, Gonçalves R V, Dias C S B, Zapata M J, Zagonel L F, Mendonça E C, Teixeirab S R, Garcia F. Nanoscale, 2013, 5:9310.
[7] Kim J, Hwang D W, Kim H G, Bae S W, Ji S M, Lee J S. Chem. Commun., 2002:2488.
[8] Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W, Sheuc H, Hwang B J. Green Chem., 2011, 13:1745.
[9] Zhang J, Yu J, Zhang Y, Li Q, Gong J R. Nano Lett., 2011, 11:4774.
[10] Nguyen M, Tran P D, Pramana S S, Lee R L, Batabyal S K, Mathews N, Wong L H, Graetzel M. Nanoscale, 2013, 5:1479.
[11] Zhou J, Tian G, Chen Y, Meng X, Shi Y, Cao X, Pan K, Fu H. Chem. Commun., 2013, 49:2237.
[12] Ran J, Yu J, Jaroniec M. Green Chem., 2011, 13:2708.
[13] Hara M, Nunoshige J, Takata T, Kondo J N, Domen K. Chem. Commun., 2003:3000.
[14] Yuan Y P, Cao S W, Yin L S, Xu L, Xue C. Int. J. Hydrogen Energy, 2013, 38:7218.
[15] Frame F A, Osterloh F E. J. Phys. Chem. C, 2010, 114:10628.
[16] Hong J, Wang Y, Wang Y, Zhang W, Xu R. ChemSusChem, 2013, 6:2263.
[17] Hou Y, Laursen A B, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52:3621.
[18] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv., 2012, 2:12122.
[19] Ou Y, Lin J, Fang S, Liao D. Chem. Phys. Lett., 2006, 429:199.
[20] Fujishima A, Zhang X, Tryk D A. Surf. Sci. Rep., 2008, 63:515.
[21] Chen X, Mao S S. Chem. Rev., 2007, 107:2891.
[22] Liu C, Han X, Xie S, Kuang Q, Wang X, Jin M, Xie Z, Zheng L. Chem. Asian J., 2013, 8:282.
[23] Yan J, Zhang Y, Liu S, Wu G, Li L, Guan N. J. Mater. Chem. A, 2015, 3:21434.
[24] Wang F, Ho J H, Jiang Y, Amal R. ACS Appl. Mater. Inter., 2015, 7:23941.
[25] Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T, Zou Z. Dalton Trans., 2015, 44:12812.
[26] Zhou X, Häublein V, Liu N, Nguyen N T, Zolnhofer E M, Tsuchiya H, Killian M S, Meyer K, Frey L, Schmuki P. Angew. Chem. Int. Ed., 2016, 55:3763.
[27] Tiwari A, Mondal I, Pal U. RSC Adv., 2015, 5:31415.
[28] Min S, Lu G. J. Phys. Chem. C, 2011, 115:13938.
[29] Pany S, Naik B, Martha S, Parida K. ACS Appl. Mater. Inter., 2014, 6:839.
[30] Long J, Chang H, Gu Q, Xu J, Fan L, Wang S, Zhou Y, Wei W, Huang L, Wang X, Liu P, Huang W. Energy Environ. Sci., 2014, 7:973.
[31] Gomes Silva C, Juárez R, Marino T, Molinari R, García H. J. Am. Chem. Soc., 2010, 133:595.
[32] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130:4007.
[33] Chen Y, Guo L. J. Mater. Chem., 2012, 22:7507.
[34] Lee S, Lee K, Kim W D, Lee S, Shin D J, Lee D C. J. Phys. Chem. C, 2014, 118:23627.
[35] Zhou W, Li W, Wang J Q, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J. Am. Chem. Soc., 2014, 136:9280.
[36] Wu H B, Hng H H, Lou X W D. Adv. Mater., 2012, 24:2567.
[37] Wu N, Wang J, Tafen D N, Wang H, Zheng J G, Lewis J P, Liu X G, Leonard S S, Manivannan A. J. Am. Chem. Soc., 2010, 132:6679.
[38] Kumar D P, Shankar M V, Kumari M M, Sadanandam G, Srinivas B, Durgakumari V. Chem. Commun., 2013, 49:9443.
[39] Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110:6503.
[40] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112:1555.
[41] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv. Mater., 2012, 24:229.
[42] Li H, Yu H, Sun L, Zhai J, Han X. Nanoscale, 2015, 7:1610.
[43] Serrano D P, Calleja G, Pizarro P, Gálvez P. Int. J. Hydrogen Energy, 2014, 39:4812.
[44] Sayed F N, Jayakumar O D, Sasikala R, Kadam R M, Bharadwaj S R, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J P, Tyagi A K. J. Phys. Chem. C, 2012, 116:12462.
[45] Zhang G, Zhao Z, Tan H, Zhao H, Qu D, Zheng M, Yu W, Sun Z. RSC Adv., 2015, 5:21237.
[46] Méndez J O, López C R, Melián E P, Díaz O G, Rodríguez J D, Hevia D F, Macías M. Appl. Catal. B Environ., 2014, 147:439.
[47] Ortiz A L, Zaragoza M M, Gutiérrez J S, da Silva Paula M M, Collins-Martínez V. Int. J. Hydrogen Energy, 2015, 40:17308.
[48] Pan T C, Wang S H, Lai Y S, Jehng J M, Huang S J. Appl. Surf. Sci., 2014, 296:189.
[49] Kum J M, Yoo S H, Ali G, Cho S O. Int. J. Hydrogen Energy, 2013, 38:13541.
[50] Chen W T, Jovic V, Sun-Waterhouse D, Idriss H, Waterhouse G I. Int. J. Hydrogen Energy, 2013, 38:15036.
[51] Hu Q, Huang J, Li G, Jiang Y, Lan H, Guo W, Cao Y. Appl. Surf. Sci., 2016, 382:170.
[52] Bala S, Mondal I, Goswami A, Pal U, Mondal R. J. Mater. Chem. A, 2015, 3:20288.
[53] Sadanandam G, Lalitha K, Kumari V D, Shankar M V, Subrahmanyam M. Int. J. Hydrogen Energy, 2013, 38:9655.
[54] Fujita S I, Kawamori H, Honda D, Yoshida H, Arai M. Appl. Catal. B:Environ., 2016, 181:818.
[55] Liu R, Yoshida H, Fujita S I, Arai M. Appl. Catal. B:Environ., 2014, 144:41.
[56] Zang Y, Li L, Xu Y, Zuo Y, Li G. J. Mater. Chem. A, 2014, 2:15774.
[57] Xiang Q, Yu J, Jaroniec M. Nanoscale, 2011, 3:3670.
[58] Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z, Liu Y. Nanoscale, 2016, 8:11034.
[59] Kuang L, Zhang W. RSC Adv., 2016, 6:2479.
[60] Maeda, K. ACS Catal., 2013, 3:1486.
[61] Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2014, 43:7787.
[62] Fan L, Long J, Gu Q, Huang H, Lin H, Wang X. J. Catal., 2014, 320:147.
[63] Korzhak A V, Ermokhina N I, Stroyuk A L, Bukhtiyarov V K, Raevskaya A E, Litvin V I, Kuchmiy S Y, Ilyin V G, Manorik P A. J. Photoch. Photobio. A, 2008, 198:126.
[64] Zhang S, Peng B, Yang S, Wang H, Yu H, Fang Y, Peng F. Int. J. Hydrogen Energy, 2015, 40:303.
[65] Tian H, Zhang X L, Scott J, Ng C, Amal R. J. Mater. Chem. A, 2014, 2:6432.
[66] Zou Y, Kang S Z, Li X, Qin L, Mu J. Int. J. Hydrogen Energy, 2014, 39:15403.
[67] Kum J M, Park Y J, Kim H J, Cho S O. Nanotechnology, 2015, 26:125402.
[68] Wu N L, Lee M S. Int. J. Hydrogen Energy, 2004, 29:1601.
[69] Clarizia L, Vitiello G, Luciani G, Di Somma I, Andreozzi R, Marotta R. Appl. Catal. A, 2016, 518:142.
[70] Foo W J, Zhang C, Ho G W. Nanoscale, 2013, 5:759.
[71] Xu S, Sun D D. Int. J. Hydrogen Energy, 2009, 34:6096.
[72] Xu S, Du A J, Liu J, Ng J, Sun D D. Int. J. Hydrogen Energy, 2011, 36:6560.
[73] Yu Y H, Chen Y P, Cheng Z. Int. J. Hydrogen Energy, 2015, 40:15994.
[74] Jung M, Scott J, Ng Y H, Jiang Y, Amal R. Int. J. Hydrogen Energy, 2014, 39:12499.
[75] Khemthong P, Photai P, Grisdanurak N. Int. J. Hydrogen Energy, 2013, 38:15992.
[76] Yu J, Hai Y, Jaroniec M. J. Colloid Interface Sci., 2011, 357:223.
[77] Li Z, Liu J, Wang D, Gao Y, Shen J. Int. J. Hydrogen Energy, 2012, 37:6431.
[78] Zhang S, Peng B, Yang S, Fang Y, Peng F. Int. J. Hydrogen Energy, 2013, 38:13866.
[79] Bandara J, Udawatta C P K, Rajapakse C S K. Photochem. Photobiol. Sci., 2005, 4:857.
[80] Sreethawong T, Yoshikawa S. Catal. Commun., 2005, 6:661.
[81] Xu S, Ng J, Zhang X, Bai H, Sun D D. Int. J. Hydrogen Energy, 2010, 35:5254.
[82] Moon G D, Joo J B, Lee I, Yin Y. Nanoscale, 2014, 6:12002.
[83] Hu Q, Huang J, Li G, Chen J, Zhang Z, Deng Z, Jiang Y, Guo W, Cao Y. Appl. Surf. Sci., 2016, 369:201.
[84] Wang Y F, Hsieh M C, Lee J F, Yang C M. Appl. Catal. B Environ., 2013, 142:626.
[85] Sreethawong T, Suzuki Y, Yoshikawa S. Int. J. Hydrogen Energy, 2005, 30:1053.
[86] Iwaszuk A, Nolan M, Jin Q, Fujishima M, Tada H. J. Phys. Chem. C, 2013, 117:2709.
[87] Yu J, Ran J. Energy Environ. Sci., 2011, 4:1364.
[88] Dang H, Dong X, Dong Y, Zhang Y, Hampshire S. Int. J. Hydrogen Energy, 2013, 38:2126.
[89] Zhang S, Wang H, Yeung M, Fang Y, Yu H, Peng F. Int. J. Hydrogen Energy, 2013, 38:7241.
[90] Yu J, Hai Y, Cheng B. J. Phys. Chem. C, 2011, 115:4953.
[91] Jang J S, Choi S H, Kim D H, Jang J W, Lee K S, Lee J S. J. Phys. Chem. C, 2009, 113:8990.
[92] Zhang L, Tian B, Chen F, Zhang J. Int. J. Hydrogen Energy, 2012, 37:17060.
[93] Wang Q, Yun G, Bai Y, An N, Chen Y, Wang R, Lei Z, Shangguan W. Int. J. Hydrogen Energy, 2014, 39:13421.
[94] Yu Z, Meng J, Xiao J, Li Y, Li Y. Int. J. Hydrogen Energy, 2014, 39:15387.
[95] Zhang P, Tachikawa T, Fujitsuka M, Majima T. Chem. Commun., 2015, 51:7187.
[96] Liu C, Wang L, Tang Y, Luo S, Liu Y, Zhang S, Zeng Y, Xu Y. Appl. Catal. B, 2015, 164:1.
[97] Zhu Y, Ling Q, Liu Y, Wang H, Zhu Y. Phys. Chem. Chem. Phys., 2015, 17:933.
[98] Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z. Int. J. Hydrogen Energy, 2013, 38:10739.
[99] Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. Chem. Phys. Lett., 2001, 336:424.
[100] Zhang W, Wang Y, Wang Z, Zhong Z, Xu R. Chem. Commun., 2010, 46:7631.
[101] Wang J, Li B, Chen J, Li N, Zheng J, Zhao J, Zhu Z. Appl. Surf. Sci., 2012, 259:118.
[102] Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11:963.
[103] Liu L, Zhu Y P, Su M, Yuan Z Y. Chem.Cat.Chem., 2015, 7:2765.
[104] Zhang L, Hu Z, Gao Z, Liu Y, Yuan Z Y. Prog. Chem., 2015, 27:1042.
[105] Li H, Kang Z, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[106] Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu L, Tung C, Zhang T. J. Mater. Chem. A, 2014, 2:3344.
[107] Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z. Nanoscale, 2013, 5:2274.
[108] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Wang E K, Yu Y, Wang J B. Nanotechnology, 2008, 19:115709.
[109] Liu X, Zeng P, Peng T, Zhang X, Deng K. Int. J. Hydrogen Energy, 2012, 37:1375.
[110] Moya A, Cherevan A, Marchesan S, Gebhardt P, Prato M, Eder D, Vilatela J J. Appl. Catal. B, 2015, 179:574.
[111] Li N, Ma Y, Wang B, Huang Y, Wu Y, Yang X, Chen Y. Carbon, 2011, 49:5132.
[112] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[113] Xiang Q, Yu J, Jaroniec M. Chem. Soc. Rev., 2012, 41:782.
[114] Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R. Adv. Mater., 2013, 25:3820.
[115] Cao X, Tian G, Chen Y, Zhou J, Zhou W, Tian C, Fu H. J. Mater. Chem. A, 2014, 2:4366.
[116] Kim H I, Moon G H, Monllor-Satoca D, Park Y, Choi W. J. Phys. Chem. C, 2011, 116:1535.
[117] Fan W, Lai Q, Zhang Q, Wang Y. J. Phys. Chem. C, 2011, 115:10694.
[118] Zhang X Y, Li H P, Cui X L, Lin Y. J. Mater. Chem., 2010, 20:2801.
[119] Zhang X, Sun Y, Cui X, Jiang Z. Int. J. Hydrogen Energy, 2012, 37:811.
[120] Mou Z, Wu Y, Sun J, Yang P, Du Y, Lu C. ACS Appl. Mater. Inter., 2014, 6:13798.
[121] Gao P, Sun D D. Appl. Catal. B Environ., 2014, 147:888.
[122] Chai B, Peng T, Zhang X, Mao J, Li K, Zhang X. Dalton Trans., 2013, 42:3402.
[123] Yu Z, Meng J, Li Y, Li Y. Int. J. Hydrogen Energy, 2013, 38:16649.
[124] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134:6575.
[125] Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J. Mater. Chem., 2012, 22:18542.
[126] Chao K J, Cheng W Y, Yu T H, Lu S Y. Carbon, 2013, 62:69.
[127] Yang Y, Yao Y, He L, Zhong Y, Ma Y, Yao J. J. Mater. Chem. A, 2015, 3:10060.
[128] Zhu Y P, Ren T Z, Yuan Z Y. ACS Appl. Mater. Interfaces, 2015, 7:16850.
[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[3] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[4] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[5] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[6] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[7] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[8] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[9] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[10] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[11] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[12] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[13] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[14] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[15] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.