中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2651-2666 DOI: 10.7536/PC220413 Previous Articles   Next Articles

• CONTENTS •

Fabrication and Application of MFI Zeolite Nanosheets

Xiuli Shao1, Siqi Wang1, Xuan Zhang1, Jun Li1, Ningning Wang1, Zheng Wang1,2(), Zhongyong Yuan3   

  1. 1 State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University,Yinchuan 750021, China
    2 Analysis and Testing Centre, Ningxia University,Yinchuan 750021, China
    3 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Zheng Wang
  • Supported by:
    National Natural Science Foundation of China(22169015); Natural Science Foundation of Ningxia(2021AAC02003); Leading Talent Project of Ningxia(KJT2016001); First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
Richhtml ( 43 ) PDF ( 775 ) Cited
Export

EndNote

Ris

BibTeX

MFI zeolite nanosheets have tremendous application potential in adsorption, separation and catalysis fields, which has become one of the hot topics in control synthesis and application of MFI zeolite due to its open framework structure, large external surface, optimized surface acidity, highly accessible acid sites and excellent molecular mass transfer properties. This review focuses on the synthesis mechanism and template types by in-situ hydrothermal synthesis and post-synthesis, as well as the influencing factors of thickness, lamellar spacing and orderliness in depth on the manufacturing and utilization of MFI zeolite nanosheets. The development of MFI zeolite nanosheets with low economic cost and suitable for mass production, as well as its application in the preparation of ultrathin zeolite membranes, catalysis of organic macromolecular reactions, and the preparation of metal catalysts supported by MFI zeolite nanosheets, are the main future research directions.

Contents

1 Introduction

2 Synthesis method of MFI zeolite nanosheets

2.1 In-situ hydrothermal

2.2 Post-synthesis

3 Applications of MFI zeolite nanosheets

3.1 Synthesis and separation application of ultrathin membrane

3.2 Catalytic conversion of organic compounds

3.3 Confinement synthesis and application of metal catalysts within MFI zeolite nanosheets

4 Conclusion and outlook

Fig. 1 (A) Schematic of preparation of and (B) SEM, (C) TEM images of MFI zeolite nanosheets by dual-template method[49] Copyright 2014, ACS
Fig.2 Schematic images of MFI zeolite nanosheets by seed-induce method[66] (a) Optical photograph, (b and c) SEM images, (d~f) HR-TEM images and the corresponding SAED pattern in the inset, (g) High-angle annular dark-field STEM image and elemental mappings Copyright 2021, RSC
Table 1 Synthesis method and template type of MFI zeolite nanosheets
Method Template Chemical formula Abbreviation ref
In-situ
synthesis
Single- template CmH2m+1-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) (n = 12, 16, 18, or 22) C m - 6 - 6Br2 12,28~30,35,37
CmH2m+1-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (2OH-)(m=16 or 22) Cm-6-6(OH2) 12,27,37
C18H37-N+(CH3)2-[C6H12-N+(CH3)2]n-2-C6H12-N+(CH3)2-C18H37 (nBr-)(n=3, 4 or 5) 18-Nn-18 38,39
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H12-N+ (CH3)2-C6H12-N+(CH3)2-C22H45 (4Br-) 22-N4-22 38,39
(C3H7)3N+ -(CH2N+)n (C3 H7)3 dC5 25
Ph-(O-CnH2n-N+(Me)2-C6H12N+(Me)2-C6H13·2Br-)3 (n =10 or 12) $\mathrm{TC}_{\mathrm{Ph}-\mathrm{n}-6-6}$ 40
C6H5-O-(CH2)10-N+(CH3)2-C6H13 (Br-) $\mathrm{C}_{\mathrm{Ph}-10-6}$ 41
C6H5-C6H4-O-(CH2)m-N+(CH3)2-C6H13 (Br-) (m =4,6, 8 or 10) $\mathrm{C}_{\mathrm{Ph}}-\mathrm{Ph}-\mathrm{m}-6$ 41,44
C6H13-N+(CH3)2-(CH2)m-O-C6H4-C6H4-O-(CH2)m-N+(CH3)2-C6H13(2Br-) (m =4,6, 8 or 10) $B C_{P h}-m-6$ 41
C6H4-C4H3-O-C10H20-N+(CH3)2-C6H13(Br-) CNh-10-6 44
C6H5-2N-C6H4-O-C10H20-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) Cazo-10-6-6 45
C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)n-O-C6H4-C6H4-O-(CH2)n-N+(CH3)2-C6H12-N+(CH3)2-C6H13(4Br-) (n =6, 10 or 12) BCPh-n-6-6 43
Dual-template CnH2n+1-N+(CH3)2-C6H12-N+(CH3)2-(CH2)10-O-C6H4-C6H4-O-(CH2)10-N+(CH3)2-C6H12-N+(CH3)2-CnH2n+1(4Br-) (n =4 or 8) BCPh-10-6-n 43
C16H33-N+(CH3)3 Br-+ N+(CH2)2 CH3 Br- CTAB + TPABr 51
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13Br2 + N+(CH2)2 CH3 OH- C22-6-6Br2 + TPABr 49
C6H13-N+(CH3)2-C6H12-N+(CH3)2-C18H37Br2+ N+(CH2)2 CH3 Br- C18-6-6Br2 + TPABr 50
C16H33-N+(CH3)3 (Br-) + N+(CH2)2 CH3 (Br-) CTAB+ TPABr 63
Seed-induced C18H45-N+(CH3)2-C6H12N+(CH3)2-C6H13 (2Br-) C18-6-6Br2 61
Si(OCH3)-(CH2)3-N(CH3)-C18H37 (Cl) TPOAC 62
N+(CH3)3 Br--C6H12- N+(CH3)3 (2I-) - 64
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6Br2 56
C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (4Br-) C6-12-diphe 57
Post-synthesis Etching C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6 Br2 67
C22H45-N+-(CH3)2-C6H12-N+-(CH3)2-C6H13 (2Br-) C22-6-6 Br2 69
N+(CH2)2 CH3 (OH-) TPAOH 70
N+(CH2)2 CH3 (OH-) TPAOH 71
Exfoliating P+(CH2)3 CH3 (OH-) or N+(CH2)2 CH3 (OH-) TBPOH or TBAOH 72
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6Br2 78
P+(CH2)3 CH3 (OH-) TBPOH 79
Pillaring Cn H 2 n + 1-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (2Br-) (n = 12, 16, or 22) Cn-6-6Br2 75
P+(CH2)3 CH3 (OH-) or N+(CH2)2 CH3 (OH-) TBPOH or TBAOH 76,77
NH2-(CH2)6 -NH2 and C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13Br2 C6DN 48
Fig. 3 Schematic and TEM images of self-pillared MFI zeolite nanosheets formed by[75??~78] (A) silica pillaring, (B) intergrowth of MEL and MFI, (C) vapor-phase pillarization Copyright 2010, ACS, 2014, Wiley, 2019, ACS
Fig. 4 Schematic illustration and SEM images of b-oriented MFI layers by (A) floating-particle coating and (B) vacuum filtration method[80,81] Copyright 2018, Wiley, Copyright 2019, Wiley
Table 2 Application of MFI zeolite nanosheets in catalytic conversion of organic compounds
No Catalytic reaction Catalyst Conversion/% Selectivity/% Lifetime/h Note ref
1 C-MFI(Si/Al=48)
MI-MFI(Si/Al=44)
41.1/55.3
43.6/61.9
26.5/63.2
19.4/68.3
- Conversion (toluene/
trimethylbenzene) Selectivity
(benzene/xylene)
51
2 CZSM-5(Si/Al=13)
NZSM-5(Si/Al=10)
CMFI(Si/Al=43)
Pillared MFI(Si/Al=69)
SPP MFI(Si/Al=75)
23.0
100.0
44.0
98.0
98.0
83.0/17.0
42.0/58.0
-
-
-
- Conversion of benzyl alcohol
Selectivity at reaction time of 20 h (dibenzyl/2-benzyl-1,3,5-trimethylbenzene)
49,88,89
57

76
3 C-MFI(Si/Al=40)
Hi-MFI(Si/Al=40)
44.8
48.2
71.2/16.3
81.7/7.9
- xylene yield and benzene selectivity 63
4 Alkylation of phenol with tertiary butyl alcohol CZSM-5(Si/Al=13)
NZSM-5(Si/Al=10)
6.2
29.8
- - Conversion rate of phenol at 4h 87
5 MTH Zn/Z5(2) (Si/Al=25)
Zn/Z5(2) (Si/Al=50)
Zn/Z5(2) (Si/Al=80)
Zn/Z5(10) (Si/Al=50)
Zn/Z5(60) (Si/Al=50)
- - 22
197
174
127
69
Lifetime (from the beginning to the methanol conversion < 50%) 96
6 Methanol to gasoline C-ZSM-5(Si/Al=28)
NZSM-5(Si/Al=40)
100.0
100.0
5.9/10.3/12.9/21.4
7.7/19.7/12.9/16.4
14
16
Lifetime (the beginning to the methanol conversion < 95%) Selectivity( C 2 =/ C 3 =/ C 4 =/
aromatic) WHSV= 16 h-1
12,62
7 Methanol to propylene NS(Si/Al=55)
CNS(Si/Al=55)
B-CNS(Si/Al=55)
bulky ZSM-5 (Si/Al=149)
lamellar ZSM-5 (Si/Al=140)
layered-bulky ZSM-5(Si/Al=141)
NMZ(Si/Al=432)
CMZ(Si/Al=386)
98.1
99.5
96.2
99.4
99.8
99.6
99.9
99.8
78.1
81.3
77.3
5.4/38.7/23.3/7.2
4.9/40.0/23.8/8.2
4.4/41.4/24.5/9.4
4.2/51.0/21.5/12.1
10.6/38.7/18.6/3.6
103
168
302
30
123
171
240
72
Selectivity( C 2 =~ C 4 =)WHSV=
3 h-1


Selectivity (ethylene/propylene/
butylenes/P/E ratio) WHSV =
1.7 h-1

WHSV = 1. 5 h-1
61


56


97
8 Bulk-MFI(Si/Al= ∞)
UI-MFI(Si/Al= ∞)
66.0
84.0
6.0
90.0
- Selectivity of CL 27
9 C-MFI(Si/Al=50)
MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
16.5
20.9
35.5
41.8/57.6
24.7/74.1
26.6/72.7
- Selectivity (p-xylene/ m-xylene) 40
10 C-MFI(Si/Al=41)
MI-MFI(Si/Al=48)
UI-MFI(Si/Al=53)
16.0
48.0
76.0
50.0/50.0/0
62.0/28.0/10.0
64.0/31.0/5.0
- selectivity (flavanone/ chalcone/
others)
12
11 C-MFI(Si/Al=41)
MI-MFI(Si/Al=48)
UI-MFI(Si/Al=53)
42.0
86.0
86.0
- - - 12
12 C-MFI(Si/Al=50)
MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
19.6
37.1
34.9
- - - 40
13 C-TS-1(Si/Al=108)
M-TS-1(Si/Al=147)
P-TS-1(Si/Al=147)
44.0
35.0
35.0
8.0/49.0/43.0
48.0/28.0/24.0
7.0/57.0/36.0
- Selectivity (benzoquinone/
catechol/hydroquinone)
48
14 Cyclooctene epoxidation C-TS-1(Si/Al=108)
M-TS-1(Si/Al=147)
P-TS-1(Si/Al=147)
15.0
15.0
29.0
49.0/51.0
65.0/35.0
80.0/20.0
- Selectivity (cyclooctene oxide. Diol: 1,2-cyclooctanediol) 48
15 ZSM-5(Si/Al=100)
ZSM-5(SDA1-TPABr)(Si/Al=100)
5.0
90.0
35.0
81.0
- Selectivity(3-Ac indole) 50
16 ZSM-5(Si/Al=100)
ZSM-5(SDA1-TPABr)(Si/Al=100)
3.0
74.0
>99
>99
- - 50
17 cracking of 1-octene MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
~ 98% (up
to 8 h)
~ 99% (up
to 13 h)
23.1/15.1
26.8/18.7
- Selectivity (ethylene/propylene) 40
18 cracking of n-dodecane MFI-Al(Si/Al=43)
MFI-Ga(Si/Ga =48)
MFI-Fe(Si/Fe =46)
- 11.7/14.2/1.2
9.1/17.7/0.8
8.4/10.3/0.9
- Selectivity(ethylene/propylene/
aromatics)
102
19 cracking of n-decane ZN-2(Si/Al=48)
DZN-2(Si/Al=51)
PZN-2(Si/Al=57)
CZ-500(Si/Al=52)
92.0
92.0
c83.0
21.0
6.3/9.0/5.9
8.5/16.9/12.4
6.6/13.4/8.2
4.2/7.5/4.7
- Selectivity(ethylene/propylene/
butene)
101
20 cracking of n-heptane N2-25(Si/Al=50) 96.0 22.5/35.0 - Selectivity(ethylene/propylene) 106
Fig. 5 (A) Synthetic procedure and (B, C) Cs-corrected STEM images of metal clusters in MFI zeolite nanosheets by impregnation method[130] Copyright 2021, ACS
[1]
http://www.iza-structure.org/databases/.
[2]
Corma A. Chem. Rev., 1997, 97(6): 2373.
[3]
Martínez C, Corma A. Coord. Chem. Rev., 2011, 255(13/14): 1558.
[4]
Vermeiren W, Gilson J P. Top. Catal., 2009, 52(9): 1131.
[5]
Chen L Y, Ma X Q, Tang F F, Li Y, Yu Z S, Chen X F. Bioresour. Technol., 2020, 312: 123592.
[6]
Christensen C H, Johannsen K, Tornqvist E, Schmidt I, Topsoe H, Christensen C H,. Catal. Today, 2007, 128(3/4): 117.
[7]
Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.
[8]
Karger J, Valiullin R. Chem. Soc. Rev., 2013, 42(9): 4172.
[9]
Holm M S, Taarning E, Egeblad K, Christensen C H. Catal. Today, 2011, 168(1): 3.
[10]
Peng P, Yan Z F, Mintova S, Gao X H. Natl. Sci. Rev., 2020, 7(11): 1726.

doi: 10.1093/nsr/nwaa184 pmid: 34691504
[11]
Zhang Y J, Che S A. Angew. Chem. Int. Ed., 2020, 59(1): 50.
[12]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461(7261): 246.
[13]
Bai P, Haldoupis E, Dauenhauer P J, Tsapatsis M, Siepmann J I. ACS Nano, 2016, 10(8): 7612.
[14]
Hernandez-Tamargo C E, Roldan A, de Leeuw N H. J. Solid State Chem., 2016, 237: 192.
[15]
Ji Y J, Xu F Y, Wei W, Gao H, Zhang K, Zhang G L, Xu Y Y, Zhang P L. J. Solid State Chem., 2021, 295: 121917.
[16]
Prech J, Pizarro P, Serrano D P, Cejka J. Chem. Soc. Rev., 2018, 47(22): 8263.
[17]
Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Chem. Rev., 2020, 120(20): 11194.
[18]
Schulman E, Wu W, Liu D X. Materials, 2020, 13(8): 1822.
[19]
Roth W J, Nachtigall P, Morris R E, Cejka J. Chem. Rev., 2014, 114(9): 4807.
[20]
Tsapatsis M. AIChE J., 2014, 60(7): 2374.
[21]
Zhao Z C, Zhang W P. Acta Physico-Chimica Sinica, 2016, 32(10): 2475.
[22]
Du Y J, Yuan Z Q, Wang Y D, He W J, Wang C M, Yang W M. Petrochemical Technology, 2015, 45(2): 227.
[23]
Min Y Y, Shang Y S, Song Y, Li G D, Gong Y J. Prog. Chem., 2015(8): 1002.
(闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军. 化学进展, 2015, 27 (8): 1002.).

doi: 10.7536/PC150150
[24]
Bonilla G, Díaz I, Tsapatsis M, Jeong H K, Lee Y, Vlachos D G. Chem. Mater., 2004, 16(26): 5697.
[25]
Chaikittisilp W, Suzuki Y, Mukti R R, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Angew. Chem. Int. Ed., 2013, 52(12): 3355.

doi: 10.1002/anie.201209638 pmid: 23418100
[26]
Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135(24): 8806.
[27]
Kim J, Park W, Ryoo R. ACS Catal., 2011, 1(4): 337.
[28]
Machoke A G, Knoke I Y, Lopez-Orozco S, Schmiele M, Selvam T, Marthala V R R, Spiecker E, Unruh T, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2014, 190: 324.
[29]
Emdadi L, Tran D T, Schulman E, Wei L, Shang W J, Chen H Y, Liu D X. Microporous Mesoporous Mater., 2019, 275: 31.
[30]
Xiao X, Zhang Y Y, Jiang G Y, Liu J, Han S L, Zhao Z, Wang R P, Li C, Xu C M, Duan A J, Wang Y J, Liu J, Wei Y C. Chem. Commun., 2016, 52(65): 10068.
[31]
Zhan E S, Xiong Z P, Zhou Y, Li M R, Wang P F, Fan W B, Shen W J. Chin. J. Catal., 2020, 41(7): 1132.
[32]
Xu L, Li C G, Zhang K, Wu P. ACS Catal., 2014, 4(9): 2959.
[33]
Wu W, Tran D T, Cheng S C, Zhang Y, Li N, Chen H Y, Chin Y H, Yao L B, Liu D X. Microporous Mesoporous Mater., 2021, 311: 110710.
[34]
Emdadi L, Tran D T, Zhang J Y, Wu W, Song H M, Gan Q Q, Liu D X. RSC Adv., 2017, 7(6): 3249.
[35]
Na K, Park W, Seo Y, Ryoo R. Chem. Mater., 2011, 23(5): 1273.
[36]
Park W, Yu D, Na K, Jelfs K E, Slater B, Sakamoto Y, Ryoo R. Chem. Mater., 2011, 23(23): 5131.
[37]
Kim Y, Kim K, Ryoo R. Chem. Mater., 2017, 29(4): 1752.
[38]
Jung J, Jo C, Cho K, Ryoo R. J. Mater. Chem., 2012, 22(11): 4637.
[39]
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333(6040): 328.
[40]
Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S N. Chem. Mater., 2014, 26(24): 7183.
[41]
Xu D D, Jing Z F, Cao F L, Sun H, Che S N. Chem. Mater., 2014, 26(15): 4612.
[42]
Zhang Y J, Shen X F, Gong Z, Han L, Sun H, Che S N. Chem. Eur. J., 2019, 25(3): 738.
[43]
Liu B Y, Duan Q Q, Li C, Zhu Z H, Xi H X, Qian Y. New J. Chem., 2014, 38(9): 4380.
[44]
Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S N. Nat. Commun., 2014, 5: 4262.
[45]
Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S N. Angew. Chem. Int. Ed., 2018, 57(3): 724.
[46]
Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1(8): 901.
[47]
Wang J G, Xu L, Zhang K, Peng H G, Wu H H, Jiang J G, Liu Y M, Wu P. J. Catal., 2012, 288: 16.
[48]
Wu W, Tran D T, Wu X Y, Oh S C, Wang M Y, Chen H Y, Emdadi L, Zhang J Y, Schulman E, Liu D X. Microporous Mesoporous Mater., 2019, 278: 414.
[49]
Emdadi L, Wu Y Q, Zhu G H, Chang C C, Fan W, Pham T, Lobo R F, Liu D X. Chem. Mater., 2014, 26(3): 1345.
[50]
Rani P, Srivastava R, Satpati B. Cryst. Growth Des., 2016, 16(6): 3323.
[51]
Liu M, Jia W Z, Liu X H, Li J H, Zhu Z R. Catal. Lett., 2018, 148(5): 1396.
[52]
Liu J, Yang D N, Wang Z M, Hiyoshi N. Adv. Mater. Interfaces, 2020, 7(4): 1901786.
[53]
Meng L Q, Zhu X C, Wannapakdee W, Pestman R, Goesten M G, Gao L, van Hoof A J F, Hensen E J M. J. Catal., 2018, 361: 135.
[54]
Chen H L, Li S W, Wang Y M. J. Mater. Chem. A, 2015, 3(11): 5889.
[55]
Chen Y H, Han D M, Zhang Q, Cui H X. J. Porous Mater., 2020, 27(5): 1265.
[56]
Chen H Y, Shang W J, Yang C B, Liu B Y, Dai C Y, Zhang J B, Hao Q Q, Sun M, Ma X X. Ind. Eng. Chem. Res., 2019, 58(4): 1580.
[57]
Liu B Y, Chen Z P, Huang J J, Chen H Y, Fang Y X. Microporous Mesoporous Mater., 2019, 273: 235.
[58]
Zhang H B, Zhao Y, Zhang H X, Wang P C, Shi Z P, Mao J J, Zhang Y H, Tang Y. Chem. Eur. J., 2016, 22(21): 7141.
[59]
Zhang H B, Zhang H X, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Chem. Mater., 2017, 29(21): 9247.
[60]
Kim J C, Ryoo R, Opanasenko M V, Shamzhy M V, Čejka J. ACS Catal., 2015, 5(4): 2596.
[61]
Shang Y S, Wang W G, Zhai Y L, Song Y, Zhao X M, Ma T, Wei J H, Gong Y J. Microporous Mesoporous Mater., 2019, 276: 173.
[62]
Fan C Y, Wang Y Q, Li H Y, Wang X, Sun C, Zhang X, Wang C, Wang S H. New J. Chem., 2018, 42(20): 17043.
[64]
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W Q, Cho H J, Fetisov E O, Thyagarajan R, DeJaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Nature, 2017, 543(7647): 690.
[65]
Kim D, Shete M, Tsapatsis M. Chem. Mater., 2018, 30(10): 3545.
[66]
Shao X L, Zhang Y, Li J, Wang Z, Zhang X, Wang L, Yuan W, Wang H T. Chem. Commun., 2021, 57(81): 10624.
[67]
Qin Z X, Pinard L, Benghalem M A, Daou T J, Melinte G, Ersen O, Asahina S, Gilson J P, Valtchev V. Chem. Mater., 2019, 31(13): 4639.
[68]
Boltz M, Losch P, Louis B, Rioland G, Tzanis L, Daou T J. RSC Adv., 2014, 4(52): 27242.
[69]
Huang X, Wang C F, Zhu Y F, Xu W Q, Sun Q, Xing A H, Ma L G, Li J, Han Z H, Wang Y G. Microporous Mesoporous Mater., 2019, 288: 109573.
[70]
Prech J, Bozhilov K N, El Fallah J, Barrier N, Valtchev V. Microporous Mesoporous Mater., 2019, 280: 297.
[71]
Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M, Liu Y,. Sci. Adv., 2020, 6(7): 5993.

doi: 10.1126/sciadv.aay5993 pmid: 32110732
[72]
Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Science, 2011, 334(6052): 72.

doi: 10.1126/science.1208891 pmid: 21980106
[73]
Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Angew. Chem. Int. Ed., 2016, 55(25): 7009.
[74]
Rehman A U, Arepalli D, Alam S F, Kim M Z, Choi J, Cho C H. Nanomaterials, 2021, 11(9): 2327.
[75]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.
[76]
Zhang X Y, Liu D X, Xu D D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336(6089): 1684.
[77]
Xu D D, Swindlehurst G R, Wu H H, Olson D H, Zhang X Y, Tsapatsis M. Adv. Funct. Mater., 2014, 24(2): 201.
[78]
Wei L, Song K C, Wu W, Holdren S, Zhu G H, Shulman E, Shang W J, Chen H Y, Zachariah M R, Liu D X. J. Am. Chem. Soc., 2019, 141(22): 8712.

doi: 10.1021/jacs.9b03479 pmid: 31136170
[79]
Guefrachi Y, Sharma G, Xu D D, Kumar G, Vinter K P, Abdelrahman O A, Li X Y, Alhassan S, Dauenhauer P J, Navrotsky A, Zhang W, Tsapatsis M. Angew. Chem. Int. Ed., 2020, 59(24): 9579.

doi: 10.1002/anie.202000395 pmid: 32115827
[80]
Kim D, Jeon M Y, Stottrup B L, Tsapatsis M. Angew. Chem. Int. Ed., 2018, 57(2): 361.
[81]
Min B, Yang S W, Korde A, Kwon Y H, Jones C W, Nair S. Angew. Chem. Int. Ed., 2019, 58(24): 8201.
[82]
Agrawal K V, Topuz B, Pham T C T, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Adv. Mater., 2015, 27(21): 3339.
[83]
Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Sci. Adv., 2018, 4(11): 8634.
[84]
Rassoulinejad-Mousavi S M, Azamat J, Khataee A, Zhang Y W. Sep. Purif. Technol., 2020, 234: 116080.
[85]
Duan X K, Kim D, Narasimharao K, Al-Thabaiti S, Tsapatsis M. Chem. Commun., 2021, 57(5): 580.
[86]
Tian Y, Li Y D. J. Chem. Ind. Eng., 2013, 64(2): 393.
(田野, 李永丹. 化工学报, 2013, 64(2): 393).
[87]
Duan Q Q, Zhu Z H. J. Synth. Cryst, 2014, 43(3): 576.
(段倩倩, 朱智洪. 人工晶体学报, 2014, 43(3): 576).
[88]
Emdadi L, Oh S C, Wu Y Q, Oliaee S N, Diao Y X, Zhu G H, Liu D X. J. Catal., 2016, 335: 165.
[89]
Wu Y Q, Lu Z, Emdadi L, Oh S C, Wang J, Lei Y, Chen H Y, Tran D T, Lee I C, Liu D X. J. Catal., 2016, 337: 177.
[90]
Emdadi L, Mahoney L, Lee I C, Leff A C, Wu W, Liu D X, Nguyen C K, Tran D T. Appl. Catal. A Gen., 2020, 595: 117510.
[91]
Mahoney L, Emdadi L, Leff A C, Tran D T, Wu W, Cheng S C, Liu D X, Nguyen C K, Lee I C. Fuel, 2019, 256: 115953.
[92]
Ye J H, Bai L, Liu B Y, Tian H J, Hu J L, Polo-Garzon F, Mayes R T, Wu Z L, Fang Y X. Ind. Eng. Chem. Res., 2019, 58(17): 7094.
[93]
Bleken B T L, Wragg D S, Arstad B, Gunnæs A E, Mouzon J, Helveg S, Lundegaard L F, Beato P, Bordiga S, Olsbye U, Svelle S, Lillerud K P. Top. Catal., 2013, 56(9/10): 558.
[94]
Meng L Q, Zhu X C, Mezari B, Pestman R, Wannapakdee W, Hensen E J M. ChemCatChem, 2017, 9(20): 3942.
[95]
Wang N, Sun W J, Hou Y L, Ge B H, Hu L, Nie J Q, Qian W Z, Wei F. J. Catal., 2018, 360: 89.
[96]
Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Appl. Catal. B Environ., 2019, 243: 721.
[97]
Hu S, Shan J, Zhang Q, Wang Y, Liu Y S, Gong Y J, Wu Z J, Dou T. Appl. Catal. A Gen., 2012, 445/446: 215.
[98]
Zhang S L, Zhang L L, Wang W G, Min Y Y, MA T, Song Y, Gong Y J, Dou T. Acta Physico-Chimica Sinica, 2014, 30(3): 535.
[99]
Kim Y, Kim J C, Jo C, Kim T W, Kim C U, Jeong S Y, Chae H J. Microporous Mesoporous Mater., 2016, 222: 1.
[100]
Zhang J X, Ren L M, Zhou A J, Li W H, Shang S J, Liu Y, Jia Z H, Liu W, Zhang A F, Guo X W, Song C S. Chem. Mater., 2022, 34(7): 3217.
[101]
Tian Y J, Zhang B F, Liang H R, Hou X, Wang L, Zhang X W, Liu G Z. Appl. Catal. A Gen., 2019, 572: 24.
[102]
Ji Y J, Shi B F, Yang H H, Yan W. Appl. Catal. A Gen., 2017, 533: 90.
[103]
Chang A, Yang T C, Chen M Y, Hsiao H M, Yang C M. J. Hazard. Mater., 2020, 400: 123241.
[104]
Liu L J, Wang H B, Wang R W, Sun C Y, Zeng S J, Jiang S, Zhang D L, Zhu L K, Zhang Z T. RSC Adv., 2014, 4(41): 21301.
[105]
Shan J F, Li Z K, Zhu S H, Liu H, Li J F, Wang J G, Fan W B. Catalysts, 2019, 9(2): 121.
[106]
Hao J, Cheng D G, Chen F Q, Zhan X L. Microporous Mesoporous Mater., 2021, 310: 110647.
[107]
Xu Z K, Huang J L, Wang T H, Yue Y Y, Bai Z S, Bao X J, Zhu H B. Chem. Ind. Eng. Prog., 2021(4): 1893.
(徐志康, 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波. 化工进展, 2021, 40(4): 1893.).
[108]
Moliner M, Gabay J E, Kliewer C E, Carr R T, Guzman J, Casty G L, Serna P, Corma A. J. Am. Chem. Soc., 2016, 138(48): 15743.

pmid: 27934002
[109]
Sun Q M, Wang N, Zhang T J, Bai R S, Mayoral A, Zhang P, Zhang Q H, Terasaki O, Yu J H. Angew. Chem. Int. Ed., 2019, 58(51): 18300.
[110]
Liu Y W, Li Z, Yu Q Y, Chen Y F, Chai Z W, Zhao G F, Liu S J, Cheong W C, Pan Y, Zhang Q H, Gu L, Zheng L R, Wang Y, Lu Y, Wang D S, Chen C, Peng Q, Liu Y Q, Liu L M, Chen J S, Li Y D. J. Am. Chem. Soc., 2019, 141(23): 9305.
[111]
Guo X K, Xu M X, She M Y, Zhu Y, Shi T T, Chen Z X, Peng L M, Guo X F, Lin M, Ding W P. Angew. Chem. Int. Ed., 2020, 59(7): 2606.
[112]
He J, Wu Z J, Gu Q Q, Liu Y S, Chu S Q, Chen S H, Zhang Y F, Yang B, Chen T H, Wang A Q, Weckhuysen B M, Zhang T, Luo W H. Angew. Chem. Int. Ed., 2021, 60(44): 23713.
[113]
Sun Q M, Wang N, Fan Q Y, Zeng L, Mayoral A, Miao S, Yang R O, Jiang Z, Zhou W, Zhang J C, Zhang T J, Xu J, Zhang P, Cheng J, Yang D C, Jia R, Li L, Zhang Q H, Wang Y, Terasaki O, Yu J H. Angewandte Chemie Int. Ed., 2020, 59(44): 19450.
[114]
Salakhum S, Saenluang K, Wattanakit C. Sustain. Energy Fuels, 2020, 4(3): 1126.
[115]
Li C Y, Sun P, Li F W. Chem. - Asian J., 2021, 16(19): 2795.
[116]
Zhu J, Osuga R, Ishikawa R, Shibata N, Ikuhara Y, Kondo J N, Ogura M, Yu J H, Wakihara T, Liu Z D, Okubo T. Angewandte Chemie Int. Ed., 2020, 59(44): 19669.
[117]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.
[118]
Luo H Y, Bui L, Gunther W R, Min E, Román-Leshkov Y. ACS Catal., 2012, 2(12): 2695.
[119]
Wang N, Sun Q M, Bai R S, Li X, Guo G Q, Yu J H. J. Am. Chem. Soc., 2016, 138(24): 7484.
[120]
Wang Y S, Hu Z P, Lv X W, Chen L, Yuan Z Y. J. Catal., 2020, 385: 61.
[121]
Yang Z Y, Li H, Zhou H, Wang L, Wang L X, Zhu Q Y, Xiao J P, Meng X J, Chen J X, Xiao F S. J. Am. Chem. Soc., 2020, 142(38): 16429.
[122]
Meng L Q, Zhu X C, Hensen E J M. ACS Catal., 2017, 7(4): 2709.
[123]
Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.
[124]
Gong P Y, Li B S, Kong X L, Liu J J, Zuo S L. Appl. Surf. Sci., 2017, 423: 433.
[125]
Feng F X, Wang L, Zhang X W, Wang Q F. Ind. Eng. Chem. Res., 2019, 58(29): 13112.
[126]
Liu G Z, Tian Y J, Zhang B F, Wang L, Zhang X W. J. Hazard. Mater., 2019, 367: 568.
[127]
Pan Y, Bhowmick A, Wu W, Zhang Y, Diao Y X, Zheng A G, Zhang C, Xie R X, Liu Z X, Meng J Q, Liu D X. ACS Catal., 2021, 11(15): 9970.
[128]
Liu G Z, Liang H R, Tian Y J, Zhang B F, Wang L. Chin. J. Chem. Eng., 2020, 28(10): 2577.
[129]
Meng L Q, Vanbutsele G, Pestman R, Godin A, Romero D E, van Hoof A J F, Gao L, Kimpel T F, Chai J C, Martens J A, Hensen E J M. J. Catal., 2020, 389: 544.
[130]
Wang N, Sun Q M, Zhang T J, Mayoral A, Li L, Zhou X, Xu J, Zhang P, Yu J H. J. Am. Chem. Soc., 2021, 143(18): 6905.
[1] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[2] Shifang Yuan, Lijing Wang, Qiuyue Zhang, Wenhua Sun. Tridentate Titanium Precatalysts Toward Olefin Polymerization [J]. Progress in Chemistry, 2017, 29(12): 1462-1470.
[3] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[4] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.
[5] Shi Jing, Zhao Guoliang, Teng Jiawei, Wang Yangdong, Tang Yi, Xie Zaiku. Advances in the Research of MFI Zeolite Morphology [J]. Progress in Chemistry, 2014, 26(04): 545-552.
[6] Liu Ning, Wang Xuzhen*, Xu Wenya, Guo Decai, Tang Jizhou, Zhang Baolu. Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts [J]. Progress in Chemistry, 2013, 25(05): 726-734.
[7] Shi Jianwen, Chen Shaohua, Cui Haojie, Fu Minglai. Two-Dimensional Titania Nanosheets [J]. Progress in Chemistry, 2012, 24(0203): 294-303.
[8] Lang Lin, Zhang Chao, Yin Xiuli, Wu Chuangzhi. Preparation Process Exploration of b-Oriented MFI Zeolite Films [J]. Progress in Chemistry, 2011, 23(5): 1022-1032.
[9] Zhang Zhaorong,Suo Jishuan,Zhang Xiaoming,Li Shuben*. New Vistas for Silica-Based Mesoporous Molecular Sieves [J]. Progress in Chemistry, 1999, 11(01): 11-.