中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2417-2431 DOI: 10.7536/PC220302 Previous Articles   Next Articles

• Review •

Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation

Baoyou Yan1, Xufei Li2,1, Weiqiu Huang1(), Xinya Wang2,1, Zhen Zhang1, Bing Zhu1   

  1. 1 Jiangsu Provincial Key Laboratory of Oil & Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou University,Changzhou 213164, China
    2 College of Materials Science & Engineering, Changzhou University,Changzhou 213164, China
  • Received: Revised: Online: Published:
  • Contact: Weiqiu Huang
  • About author:
    The authors contribute equally to this review
  • Supported by:
    National Natural Science Foundation of China(52174058); Key Research and Development Program of Jiangsu Province (Industry Foresight and Common Key Technology)(BE2018065); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_3104)
Richhtml ( 55 ) PDF ( 763 ) Cited
Export

EndNote

Ris

BibTeX

Adsorptive separation has been widely used in petroleum, chemical, pharmaceutical, environmental protection and many other fields due to the advantages of high efficiency and low-energy consumption. Therein, the structural characteristics (such as specific surface area, pore size, pore volume, surface functional groups, etc.) of the adsorbent are the key factors that affect the adsorption capacity and separation efficiency. Metal-organic framework (MOF) materials have excellent pore structures and abundant functional groups (—NH2, —CHO, etc.), which can be easily post-modified and functionalized with specific functions, thus enhancing the interaction between MOFs and adsorbates and achieving high adsorption capacity and separation selectivity. In this context, the synthesis strategies of MOF-NH2/CHO materials were firstly outlined, then the research progress of imine covalently post-modified MOF (ICPSM-MOF) materials was summarized, and their applications in gas and liquid adsorption separation were emphasized. In addition, the difficulties and challenges faced by the current ICPSM-MOFs were finally analyzed, and the future research trend of ICPSM-MOFs was also put forward.

Contents

1 Introduction

2 Synthesis strategies of MOF-NH2/CHO materials

2.1 Synthesis strategies of MOF-NH2 materials

2.2 Synthesis strategies of MOF-CHO materials

3 MOF-NH2/CHO materials are modified by imine covalent post synthetic modification

3.1 Imine covalent post synthetic modification of MOF-NH2 materials (MOF—N=C—R)

3.2 Imine covalent post synthetic modification of MOF-CHO materials (MOF—C=N—R)

4 Adsorption and separation application of ICPSM-MOF materials

4.1 Gas phase adsorption separation

4.2 Liquid phase adsorption separation

5 Conclusion and outlook

Fig. 1 Number of publications per year retrieved with keywords “Metal-organic frameworks” and “Metal-organic frameworks + adsorption/separation”
Fig. 2 Schematic diagram of MOF-NH2/CHO materials construction and ICPSM
Table 1 Ligands, synthesis strategies and structure parameters of MOF-NH2
Fig. 3 Partial ligands for the synthesis of MOF-NH2: (a) 2-aminoterephthalic acid (BDC-NH2), (b) 3-amino-1,2,4-triazole (HATZ), (c) 5-aminotetrazole (5-AT), (d) 5-(5-Amino-1H-tetrazol-1-yl)-1,3-benzenedicarboxylic acid (H2ATBDC), (e) 3-amino-4-(pyridin-4-yl) benzoic acid (BPA-NH2), (f) 5-Amino-1H-imidazole-4-carbonitrile (cyamIm), (g) 2-amino-1,3,5-benzenetricarboxylate (BTC-NH2), (h) 2-aminobenzimidazole (2-amBzIm), (i) adenine (ade)
Fig. 4 Schematic diagram of MIL-101-NH2 preparation by PSM of MIL-101
Fig. 5 Schematic diagram of MOF-NH2 prepared by loading melamine, ade and EDA on OMSs of MIL-101
Fig.6 Partial ligands for the synthesis of MOF-CHO: (a) imidazole-2-carboxaldehyde (ICA), (b) 4-methylimidazole-5-carboxaldehyde (aImeIm), (c) 2-formalbiphenyl-4,4'-dicarboxylicacid (H2BPDC-CHO), (d) imidazole-4-carboxaldehyde (AIdIm)
Table 2 Ligands, synthesis strategies and structure parameters of MOF-CHO
Fig. 7 Schematic diagram of (a) salicylaldehyde modified IRMOF-3, (b) pyridine-2-carbaldehyde modified UMCM-1-NH2, (c) formaldehyde modified UiO-66-NH2, (d) pyridine-2-carbaldehyde modified MIL-125-NH2(Ti)
Fig. 8 Schematic diagram of the synthesis of MIL-68-NH2/TPA-COF hybrid material
Fig. 9 Schematic diagram of (a) ZIF-90 modification by ethanolamine, (b) ZIF-90/COF-42-B synthesis
Fig. 10 Schematic diagram of (a) SIM-1 modified by dodecylamine, (b) UiO-67-CHO modified by amino ligands
Fig. 11 (a) Schematic diagram of UiO-66-NH2 modified by PEI, (b) comparisons of adsorption capacities and selectivities on UiO-66-NH2 and PEIC96/UiO for CO2
Fig. 12 (a) Schematic diagram of ZIF-90 modified by 2,3,4,5,6-pentafluorobenzonitrile, (b) comparisons of adsorption capacities on ZIF-90 and S-ZIF-90 for CO2, CH4 and N2
Fig. 13 (a) Schematic diagram of UiO-66-NH2 modified by ICA, (b) comparisons of adsorption capacities on UiO-66-NH2 and UiO-66-NH2/ICA for CO2 and CH4
Fig. 14 Schematic diagram of ZIF-90 modified by EA and comparison of H2/CO2 selectivity before and after modification
Table 3 Reaction conditions, application areas and mechanism of action of typical ICPSM-MOF
Fig. 15 (a) Schematic diagram of ZIF-90 modified by hydroxylamine hydrochloride, (b) adsorption mechanism of U(Ⅵ) on ZIF-90-OM
Fig. 16 Schematic diagram of ZIF-90 modified by POSS-NH2
Table 4 Reaction conditions, application areas and mechanism of action of typical ICPSM-MOF
[1]
Zhou D D, Zhang X W, Mo Z W, Xu Y Z, Tian X Y, Li Y, Chen X M,. Zhang J P. EnergyChem, 2019, 1(3): 100016.

doi: 10.1016/j.enchem.2019.100016
[2]
Li Z, Song M, Zhu W Y, Zhuang W C, Du X H, Tian L. Coordin. Chem. Rev., 2021, 439: 213946.

doi: 10.1016/j.ccr.2021.213946
[3]
Patial S, Raizada P, Hasija V, Singh P, Thakur V K, Nguyen V H., Mater. Today. Energy., 2021, 19: 100589.
[4]
Tan Y. M, Meng H, Zhang X. Prog. Chem., 2019, 31(7): 980.
(谭远铭, 孟皓, 张霞. 化学进展, 2019, 31, 980.).

doi: 10.7536/PC181108
[5]
Qazvini O T, Babarao R, Telfer S G. Nat. Commun., 2021, 12(1): 197.

doi: 10.1038/s41467-020-20489-2 pmid: 33420024
[6]
Wu D, Zhang P F, Yang G P, Hou L, Zhang W Y, Han Y F, Liu P, Wang Y Y. Coordin. Chem. Rev., 2021, 434: 213709.

doi: 10.1016/j.ccr.2020.213709
[7]
Yu F, Bai X T, Liang M X, Ma J. Chem. Eng. J. 2021, 405: 126960.

doi: 10.1016/j.cej.2020.126960
[8]
Huang W Q. Fundamental theory of oil vapour recovery and its application, China Petrochemical Press, Beijing, 2011, pp. 244-245.
(黄维秋, 油气回收基础理论及其应用, 中国石化出版社, 北京, 2011, pp. 244-245.).
[9]
Li X F, Yan B Y, Huang W Q, Fu L P, Sun X H, Lv A H. Acta Chim. Sinica, 2021, 79(4): 459.

doi: 10.6023/A20100494
(李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华. 化学学报, 2021, 79: 459.).

doi: 10.6023/A20100494
[10]
Zhang H, Li G L, Zhang K G, Liao C Y. Acta Chim. Sinica 2017, 75(9): 841.

doi: 10.6023/A17040168
(张贺, 李国良, 张可刚, 廖春阳. 化学学报, 2017, 75(9): 841.).

doi: 10.6023/A17040168
[11]
Roshanfekr Rad L, Anbia M. J. Environ. Chem. Eng., 2021, 9(5): 106088.

doi: 10.1016/j.jece.2021.106088
[12]
Zhu J H, Huang W Q, Fu L P, Zhu B, Li X F, Wang X Y, Wang Y Y, Chen W H. ACS Appl. Nano Mater., 2021, 4(11): 12453.

doi: 10.1021/acsanm.1c02954
[13]
Li H L, Eddaoudi M, O’keeffe M, Yaghi O M. Nature, 1999, 402(5679): 276.

doi: 10.1038/46248
[14]
Rosi Nathaniel,. L Eckert, J Eddaoudi M, Vodak David T, Kim J, O’keeffe M, Yaghi O M. Science, 2003, 300(5622): 1127.

pmid: 12750515
[15]
Mei P, Zhang Y Y, Feng X. Acta Chim. Sinica, 2020, 78(10): 1041.

doi: 10.6023/A20060256
(梅佩, 张媛媛, 冯霄. 化学学报, 2020, 78(10): 1041.)

doi: 10.6023/A20060256
[16]
Liu J H, Wu X Q, Wu Y F, Yu J M. Prog. Chem., 2020, 32(1): 133.
(刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 化学进展, 2020, 32(1): 133.).

doi: 10.7536/PC190431
[17]
Furukawa H, Cordova K E, O’keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444
[18]
Zhong M J, Zhang S, Dong A W, Sui Z Y, Feng L J, Chen Q. J. Mater. Sci., 2020, 5(24): 10388.
[19]
Gwon K, Han I, Lee S, Kim Y, Lee D N. ACS Appl. Mater. Inter., 2020, 12(18): 20234.

doi: 10.1021/acsami.0c03187
[20]
Assen A H, Yassine O, Shekhah O, Eddaoudi M, Salama K N. ACS Sensors, 2017, 2(9): 1294.

doi: 10.1021/acssensors.7b00304
[21]
Arrozi U S F, Bon V, Krause S, Lubken T, WeDS M S, Senkovska I, Kaskel S. Inorg. Chem., 2020, 59(1): 350.

doi: 10.1021/acs.inorgchem.9b02517 pmid: 31820946
[22]
Wang Z Q, Cohen S M. Chem. Soc. Rev., 2009, 38(5): 1315.

doi: 10.1039/b802258p
[23]
Cohen S M. Chem. Rev., 2012, 112(2): 970.

doi: 10.1021/cr200179u pmid: 21916418
[24]
Mandal S, Natarajan S, Mani P, Pankajakshan A. Adv. Funct. Mater., 2020, 31(4): 2006291.

doi: 10.1002/adfm.202006291
[25]
Yuan Y, Wang M, Zhou Y Q, Wang Z, Wang J X. CIESC J., 2020, 71(2): 429.
(原野, 王明, 周云琪, 王志, 王纪孝. 化工学报, 2020, 71(2): 429.).
[26]
Haneda T, Kawano M, Kawamichi T, Fujita M. J. Am. Chem. Soc., 2008, 130(5): 1578.

doi: 10.1021/ja7111564
[27]
Morris W, Briley W E, Auyeung E, Cabezas M D, Mirkin C A. J. Am. Chem. Soc., 2014, 136(20): 7261.

doi: 10.1021/ja503215w
[28]
Wang Z Q, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368.

doi: 10.1021/ja074366o
[29]
Marshall R J, Griffin S L, Wilson C, Forgan R S. J. Am. Chem. Soc., 2015, 137(30): 9527.

doi: 10.1021/jacs.5b05434 pmid: 26175317
[30]
Taylor Pashow K M L, Della Rocca J, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131(40): 14261.

doi: 10.1021/ja906198y pmid: 19807179
[31]
Lin Y C, Kong C L, Chen L. RSC. Adv., 2016, 6(39): 32598.

doi: 10.1039/C6RA01536K
[32]
Emerson A J, Chahine A, Batten S R, Turner D R. Coordin. Chem. Rev., 2018, 365: 1.

doi: 10.1016/j.ccr.2018.02.012
[33]
Yoo D K, Ahmed I, Sarker M, Lee H J, Vinu A, Jhung S H. Mater. Today., 2021, 51: 566.

doi: 10.1016/j.mattod.2021.07.021
[34]
Kaur M, Kumar S, Younis S A, Yusuf M, Lee J, Weon S, Kim K H, Malik A K. Chem. Eng. J., 2021, 423: 130230.

doi: 10.1016/j.cej.2021.130230
[35]
Braun M E, Steffek C D, Kim J, Rasmussen P G, Yaghi O M. Chem. Commun., 2001, 24: 2532.
[36]
LlabrÉs I Xamena F X, Cirujano F G, Corma A. Micropor. Mesopor. Mater., 2012, 157: 112.

doi: 10.1016/j.micromeso.2011.12.058
[37]
Baudron S A. CrystEngComm, 2010, 12(8): 2288.

doi: 10.1039/c001020k
[38]
Guo H, Liu J Q, Li Y H, Caro J, Huang A S. Micropor. Mesopor. Mater., 2021, 313: 110823.

doi: 10.1016/j.micromeso.2020.110823
[39]
Kim M, Cohen S M. CrystEngComm, 2012, 14(12): 4096.

doi: 10.1039/C2CE06491J
[40]
Dhakshinamoorthy A, Heidenreich N, Lenzen D, Stock N. CrystEngComm, 2017, 19(29): 4187.

doi: 10.1039/C6CE02664H
[41]
Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, FÉrey G, Stock N. Inorg. Chem., 2009, 48(7): 3057.

doi: 10.1021/ic8023265 pmid: 19245258
[42]
Liu L L, Tai X S,; Zhou X J, Liu L J. Chem. Res. Chin. Univ., 2017, 33(2): 231.

doi: 10.1007/s40242-017-6420-7
[43]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454
[44]
Lv Y C, Zhang R S, Zeng S L, Liu K Y, Huang S Y, Liu Y F, Xu P F, Lin C X, Cheng Y J, Liu M H. Chem. Eng. J., 2018, 339: 359.

doi: 10.1016/j.cej.2018.01.139
[45]
Cai M K, Li Y L, Liu Q L, Xue Z Q, Wang H P, Fan Y N, Zhu K L, Ke Z F, Su C Y, Li G Q. Adv. Sci., 2019, 6(8): 1802365.

doi: 10.1002/advs.201802365
[46]
Hartmann M, Fischer M. Micropor. Mesopor. Mater., 2012, 164: 38.

doi: 10.1016/j.micromeso.2012.06.044
[47]
Dapaah M F, Liu B J, Cheng L. J. Environ. Chem. Eng., 2021, 9(4): 105275.

doi: 10.1016/j.jece.2021.105275
[48]
Wu Z Y, Huang X B, Zheng H, Wang P, Hai G T, Dong W J, Wang G. Appl. Catal. B-Environ., 2018, 224: 479.

doi: 10.1016/j.apcatb.2017.10.034
[49]
Zango Z U, Jumbri K, Sambudi N S, Hanif Abu Bakar N H, Fathihah Abdullah N A, Basheer C, Saad B. RSC. Adv., 2019, 9(71): 41490.

doi: 10.1039/C9RA08660A
[50]
Wang Z Q, Tanabe K K, Cohen S M. Inorg. Chem., 2009, 48(1): 296.

doi: 10.1021/ic801837t
[51]
Lin R B, Chen D, Lin Y Y, Zhang J P, Chen X M. Inorg. Chem., 2012, 51(18): 9950.

doi: 10.1021/ic301463z
[52]
Yan Q J, Lin Y C, Wu P Y, Zhao L, Cao L J, Peng L M, Kong C L, Chen L. ChemPlusChem, 2013, 78(1): 86.

doi: 10.1002/cplu.201200270
[53]
Hu T L, Wang H L, Li B, Krishna R, Wu H, Zhou W, Zhao Y F,; Han Y, Wang X, Zhu W D, Yao Z Z, Xiang S C, Chen B L. Nat. Commun., 2015, 6: 7328.

doi: 10.1038/ncomms8328
[54]
Ma R D, Wang F Y, Lin J Y, Guo H D, Zhou T, Liu S, Guo Z Y, Guo X M. Micropor. Mesopor. Mater., 2020, 305: 110306.

doi: 10.1016/j.micromeso.2020.110306
[55]
Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M. J. Am. Chem. Soc., 2010, 132(32): 11006.

doi: 10.1021/ja104035j
[56]
Peikert K, Hoffmann F, Froba M. Chem. Commun., 2012, 48(91): 11196.

doi: 10.1039/c2cc36220a
[57]
Kleist W, Maciejewski M, Baiker A. Thermochim. Acta., 2010, 499(1-2): 71.

doi: 10.1016/j.tca.2009.10.012
[58]
Marx S, Kleist W, Huang J, Maciejewski M, Baiker A. Dalton Trans., 2010, 39(16): 3795.

doi: 10.1039/c002483j
[59]
Tu B B, Diestel L, Shi Z L, Bandara W, Chen Y, Lin W M, Zhang Y B, Telfer S G, Li Q W. Angew. Chem. Int. Ed., 2019, 58(16): 5348.

doi: 10.1002/anie.201900863
[60]
Vaidhyanathan R, Iremonger S S, Dawson K W, Shimizu G K. Chem. Commun., 2009, 35: 5230.
[61]
Lan J W, Qu Y, Zhang X, Ma H R, Xu P, Sun J M. J. CO2 Util., 2020, 35: 216.
[62]
Vaidhyanathan R, Iremonger S S, Shimizu G K, Boyd P G, Alavi S, Woo T K. Angew. Chem. Int. Ed., 2012, 51(8): 1826.

doi: 10.1002/anie.201105109 pmid: 22213592
[63]
Xiang L, Sheng L Q, Wang C Q, Zhang L X, Pan Y C, Li Y S. Adv. Mater., 2017, 29(32): 1606999.

doi: 10.1002/adma.201606999
[64]
Bernt S, Guillerm V, Serre C, Stock N. Chem. Commun., 2011, 47(10): 2838.

doi: 10.1039/c0cc04526h
[65]
Deria P, Mondloch J E, Karagiaridi O, Bury W, Hupp J T, Farha O K. Chem. Soc. Rev., 2014, 43(16): 5896.

doi: 10.1039/C4CS00067F
[66]
Thompson J A, Brunelli N A, Lively R P, Johnson J R, Jones C W, Nair S. J. Phys. Chem. C, 2013, 117(16): 8198.

doi: 10.1021/jp312590r
[67]
Cho K Y, An H S, Do X H, Choi K, Yoon H G, Jeong H K, Lee J S, Baek K Y. J. Mater. Chem. A, 2018, 6(39): 18912.

doi: 10.1039/C8TA02797H
[68]
Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, FÉrey G. Angew. Chem. Int. Ed., 2008, 120(32): 4029.
[69]
Seo P W, Khan N A, Hasan Z, Jhung S H. ACS Appl. Mater. Inter., 2016, 8(43): 29799.

doi: 10.1021/acsami.6b11115
[70]
Sarker M, Song J Y, Jeong A R, Min K S, Jhung S H. J. Hazard. Mater., 2018, 344: 593.

doi: 10.1016/j.jhazmat.2017.10.041
[71]
Li X F, Huang W Q, Liu X Q, Bian H. J. Solid State Chem., 2019, 278: 120890.

doi: 10.1016/j.jssc.2019.07.051
[72]
Li X F, Huang W Q, Tang B, Yu H G, Huang S L, Zhao W P. New Chem. Mater., 2020, 48(4): 10.
(李旭飞, 黄维秋, 唐波, 余浩刚, 黄顺林, 赵文蒲. 化工新型材料, 2020, 48(4): 10.).
[73]
Morris W, He N, Ray K G, Klonowski P, Furukawa H, Daniels I N, Houndonougbo Y A, Asta M, Yaghi O M, Laird B. B. J. Phys. Chem., C 2012, 116(45): 24084.
[74]
Xi F G, Liu H, Yang N N, Gao E Q. Inorg. Chem., 2016, 55(10): 4701.

doi: 10.1021/acs.inorgchem.6b00598
[75]
Jaafar A, Platas Iglesias C, Bilbeisi R A. RSC Adv., 2021, 11(27): 16192.

doi: 10.1039/d1ra02025k pmid: 35479125
[76]
Li X F, Tang B, Huang W Q, Yu H G. Z. Anorg. Allg. Chem., 2019, 645(2): 73.

doi: 10.1002/zaac.201800303
[77]
Huang W Q, Li X F, Yan B Y, Dong S C, Zhu J H, Wang Y Y. CN. 112625259A, 2021.
(黄维秋, 李旭飞, 闫保有, 董邵灿, 朱佳慧, 王雨雨. CN. 112625259A, 2021.).
[78]
Morris W, Doonan C J, Furukawa H, Banerjee R, Yaghi O M. J. Am. Chem. Soc., 2008, 130(38): 12626.

doi: 10.1021/ja805222x
[79]
Thompson J A, Blad C R, Brunelli N A, Lydon M E, Lively R P, Jones C W, Nair S. Chem. Mater., 2012, 24(10): 1930.

doi: 10.1021/cm3006953
[80]
Ingleson M J, Barrio J P, Guilbaud J B, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 23: 2680.
[81]
Doonan C J, Morris W, Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(27): 9492.

doi: 10.1021/ja903251e
[82]
Wang J T, Xia T F, Zhang X, Zhang Q, Cui Y J, Yang Y, Qian G D. RSC. Adv., 2017, 7(86): 54892.

doi: 10.1039/C7RA11162B
[83]
Waller P J, Gándara F, Yaghi O M. Accounts Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369 pmid: 26580002
[84]
Shan Y Y, Chen L Y, Pang H, Xu Q. Small Struct., 2020, 2(2): 2000078.

doi: 10.1002/sstr.202000078
[85]
Yusran Y, Guan X Y, Li H, Fang Q R, Qiu S L. Natl. Sci. Rev., 2020, 7(1): 170.

doi: 10.1093/nsr/nwz122 pmid: 34692030
[86]
Li Y, Karimi M, Gong Y N, Dai N, Safarifard V, Jiang H L. Matter, 2021, 4(7): 2230.

doi: 10.1016/j.matt.2021.03.022
[87]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454
[88]
Zhong X, Liu Y X, Liang W, Zhu Y L, Hu B W. ACS Appl. Mater. Inter., 2021, 13(1): 13883.

doi: 10.1021/acsami.1c03151
[89]
Li X F, Yan B Y, Huang W Q, Bian H, Wang X Y, Zhu J H, Dong S C, Wang Y Y, Chen W H. Chem. Eng. J., 2022, 428: 132501.

doi: 10.1016/j.cej.2021.132501
[90]
Li M M, Qiao S, Zheng Y L, Andaloussi Y H, Li X, Zhang Z J, Li A, Cheng P, Ma S Q, Chen Y. J. Am. Chem. Soc., 2020, 142(14): 6675.

doi: 10.1021/jacs.0c00285
[91]
Canivet J, Aguado S, Daniel C, Farrusseng D. ChemCatChem, 2011, 3(4): 675.

doi: 10.1002/cctc.201000386
[92]
Normile D. Science, 2020, 370(6512): 17.

doi: 10.1126/science.370.6512.17 pmid: 33004492
[93]
Zhu J J, Wu L B, Bu Z Y, Jie S Y, Li B G. ACS Omega. 2019, 4(2): 3188.

doi: 10.1021/acsomega.8b02319
[94]
Fan W, Ying Y, Peh S B, Yuan H, Yang Z, Yuan Y D, Shi D, Yu X, Kang C, Zhao D. J. Am. Chem. Soc., 2021, 143(42): 17716.

doi: 10.1021/jacs.1c08404
[95]
Liu C Y, Huang A S. Enviro. Prot. Chem. Ind., 2017, 36(5): 548.
(刘传耀, 黄爱生. 化工环保, 2017, 36(5): 548.).

doi: 10.3969/j.issn.1006-1878.2017.05.010
[96]
Jiang Y Z, Liu C Y, Caro J, Huang A S. Micropor. Mesopor. Mater., 2019, 274: 203.

doi: 10.1016/j.micromeso.2018.08.003
[97]
Ghasemi M H, Irani V, Tavasoli A. J. Nat. Gas Sci. Eng., 2020, 74: 103110.

doi: 10.1016/j.jngse.2019.103110
[98]
Van Den Berg A W C, Areán C O. Chem. Commun. 2008, 6: 668.
[99]
Lee C H, Mun S, Lee K B. J. Power Sources, 2015, 281: 158.

doi: 10.1016/j.jpowsour.2015.01.175
[100]
Huang A S, Liu Q, Wang N Y, Caro J. Micropor. Mesopor. Mater., 2014, 192: 18.

doi: 10.1016/j.micromeso.2013.09.025
[101]
Huang A S, Caro J. Angew. Chem. Int. Ed., 2011, 50(21): 4979.

doi: 10.1002/anie.201007861
[102]
Getman R B, Bae Y S, Wilmer C E, Snurr R Q. Chem. Rev., 2012, 112(2): 703.

doi: 10.1021/cr200217c
[103]
Mohan D, Sarswat A, Ok Y S, Pittman Jr C U. Bioresource Technol., 2014, 160: 191.

doi: 10.1016/j.biortech.2014.01.120
[104]
Hashim M A, Mukhopadhyay S, Sahu J N, Sengupta B. J. Environ. Manage., 2011, 92(10): 2355.

doi: 10.1016/j.jenvman.2011.06.009 pmid: 21708421
[105]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.

doi: 10.1016/j.chemosphere.2018.06.114
[106]
Bhattacharjee S, Lee Y R, Ahn W S. CrystEngComm, 2015, 17(12): 2575.

doi: 10.1039/C4CE02555E
[107]
Tang J L, Chen Y B, Zhao M H, Wang S X, Zhang L B. J. Hazard. Mater., 2021, 413: 125278.

doi: 10.1016/j.jhazmat.2021.125278
[108]
Mei D C, Li H, Liu L J, Jiang L C, Zhang C H, Wu X R, Dong H X, Ma F Q. Chem. Eng. J., 2021, 425: 130468.

doi: 10.1016/j.cej.2021.130468
[109]
Qin X D, Yang W T, Yang W K, Ma Y, Li M L, Chen C, Pan Q H. Micropor. Mesopor. Mater., 2021, 323: 111231.

doi: 10.1016/j.micromeso.2021.111231
[110]
He Y P, Guo G J, Wu S, Zhang X Y, Yang S J, Lv B L. Fine. Chem., 2019, 36(9): 1910.
(何云鹏, 郭改娟, 吴双, 张晓燕, 杨水金, 吕宝兰. 精细化工, 2019, 36(9): 1910.).
[111]
Wang X Y, Huang W Q, Fu L P, Sun X H, Zhong J, Dong S C, Zhu J H. J. Coat. Technol. Res., 2021, 18(2): 285.

doi: 10.1007/s11998-020-00428-y
[112]
Wang X Y, Huang W Q, Li X F, Dong S C, Zhang Z, Zhong J. J. Water. Process. Eng., 2021, 43: 102276.

doi: 10.1016/j.jwpe.2021.102276
[113]
Firoozi M, Rafiee Z, Dashtian K. ACS Omega, 2020, 5(16): 9420.

doi: 10.1021/acsomega.0c00539 pmid: 32363294
[114]
Loganathan P, K K R D, Shanmugan S. Inorg. Chem. Front., 2021, 8(9): 2288.

doi: 10.1039/D0QI01405B
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[14] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[15] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.