中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2254-2266 DOI: 10.7536/PC220101 Previous Articles   Next Articles

• Review •

Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst

Yang Linyan, Guo Yupeng, Li Zhengjia(), Cen Jie, Yao Nan(), Li Xiaonian()   

  1. College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology,Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Contact: Li Zhengjia, Yao Nan, Li Xiaonian
  • Supported by:
    National Natural Science Foundation of China(22108253); National Key R&D Program of China(2017YFB0602500)
Richhtml ( 29 ) PDF ( 469 ) Cited
Export

EndNote

Ris

BibTeX

The conversion of synthesis gas into fuel and high value-added chemicals through the Fischer-Tropsch synthesis (FTs) process is a crucial way to solve the problem of clean utilization of resources such as coal, which has been an important part of the modern coal chemical industry in China. It can reduce the dependence on petroleum imports and ensure national energy strategy security. Cobalt-based catalysts have become one of the most widely studied Fischer-Tropsch synthesis catalysts due to their outstanding catalytic activity, high chain growth factor, low CO2 selectivity, and long life. How to adjust the surface and interface properties of the catalyst to break the dependence of reduction and dispersion, and improve the reaction activity and product selectivity within a certain carbon chain range is still a significant challenge for the development of high-performance cobalt-based Fischer-Tropsch synthesis catalysts. In this paper, the latest research progress in the regulation of the surface and interface properties of cobalt-based Fischer-Tropsch synthesis catalysts is reviewed from three aspects: structure sensitivity (size and crystal effect), metal-support interaction, and confinement effect, so as to provide a theoretical basis for the design of catalyst microstructure and regulation of reaction performance.

Fig. 1 TOF (a), CH4 (b) and C 5 + selectivity (c), based on CO consumption, vs particle size for Co-based Fischer-Tropsch catalysts[21??????????????~36]
Fig. 2 The dependence of activity on the crystallographic structure and morphology: HCP vs FCC[44]
Fig. 3 Schematic illustration of the synthesis of HCP Co and FCC Co, and comparison of activation energy and TOF value[45]
Fig. 4 Schematic illustration of high alcohol formation mechanism on the surface of Co@Co2C catalyst[50]
Fig.5 Sketch of the formation process of Co2C nanoprisms[53]
Fig. 6 The three typical phenomena of metal-support interactions: (a) formation of chemical composition, (b) mode of SMSI, (c) weak interaction between metal NPs and support
Fig. 7 Fabrication of Co/TiO2, Co/C-TiO2 and Co/TiO2@xCN catalysts, and their catalytic performance for syngas conversions[60,61]
Fig.8 Schematic diagram of pyrrole nitrogen, pyridine nitrogen and graphite nitrogen
Fig. 9 Synthesis of the Cat-xh catalysts. (a) Schematic illustration of the synthesis of the Co3O4 nanocrystals with the narrow size distribution and the preparation of the Cat-xh catalysts with the uniform size distribution. (b~d) TEM images of the materials containing Co3O4 hydrothermal-synthesized for 8 h. (b) TTAB-capped Co3O4 nanocrystals. (c) Co3O4-TTAB-silica nanocomposite. (d) Cat-8h. Scale bars: (b) 50nm; (c) 10nm; (d) 20nm[29]
Fig. 10 Schematic illustration of coated Co@SiO2 catalyst synthesis[82]
Fig. 11 Co-MOFs-derived catalysts for Fischer-Tropsch synthesis. (a) ZIF-67 and Co-MOF-74 derived Co@CN and Co@C[93]; (b) Si-doped Co@C catalyst[94]; (c) Co@C achieved by chemical vapour deposition of ethyne over MOFs[95]; (d) Schematic illustration of the synthesis of the Co@SiO2 catalyst[96]
[1]
Xu J, Yang Y, Li Y W. Fuel, 2015, 152: 122.

doi: 10.1016/j.fuel.2014.11.059
[2]
Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107(5): 1692.

pmid: 17488058
[3]
de Smit E, Weckhuysen B M. Chem. Soc. Rev., 2008, 37(12): 2758.

doi: 10.1039/b805427d
[4]
Chen Y P, Wei J T, Duyar M S, Ordomsky V V, Khodakov A Y, Liu J. Chem. Soc. Rev., 2021, 50(4): 2337.

doi: 10.1039/D0CS00905A
[5]
van Santen R A, Markvoort A J, Filot I A W, Ghouri M M, Hensen E J M. Phys. Chem. Chem. Phys., 2013, 15(40): 17038.

doi: 10.1039/c3cp52506f pmid: 24030478
[6]
Savost’yanov A P, Yakovenko R E, Sulima S I, Bakun V G, Narochnyi G B, Chernyshev V M, Mitchenko S A. Catal. Today, 2017, 279: 107.

doi: 10.1016/j.cattod.2016.02.037
[7]
Xu R, Hou C P, Xia G F, Sun X, Li M F, Nie H, Li D D. Catal. Today, 2020, 342: 111.

doi: 10.1016/j.cattod.2019.04.004
[8]
Eschemann T O, Oenema J, de Jong K P. Catal. Today, 2016, 261: 60.

doi: 10.1016/j.cattod.2015.06.016
[9]
Nabaho D, Hans Niemantsverdriet J W, Claeys M, van Steen E. Catal. Today, 2016, 261: 17.

doi: 10.1016/j.cattod.2015.08.050
[10]
Guo S P, Niu C C, Ma Z Y, Wang J G, Hou B, Jia L T, Li D B. ChemCatChem, 2021, 13(5): 1375.

doi: 10.1002/cctc.202001512
[11]
Guo Q, Huang J, Qian W X, Zhang H T, Ma H F, Ying W Y. Catal. Lett., 2018, 148(9): 2789.

doi: 10.1007/s10562-018-2443-z
[12]
Zhao N, Chen Y, Li X, Nisa M U, Jiang X N, Dai L Y, Li Z H. Appl. Surf. Sci., 2021, 570: 151127.

doi: 10.1016/j.apsusc.2021.151127
[13]
Du H, Jiang M, Zhao Z A, Li Y H, Liu T, Zhu H J, Zhang Z C, Ding Y J. Catal. Lett., 2021, 151(12): 3632.

doi: 10.1007/s10562-021-03602-y
[14]
Nakhaei Pour A, Housaindokht M R, Kamali Shahri S M. Ind. Eng. Chem. Res., 2018, 57(41): 13639.

doi: 10.1021/acs.iecr.8b02485
[15]
Wang B, Han Y Y, Chen S F, Zhang Y H, Li J L, Hong J P. Catal. Today, 2020, 355: 10.

doi: 10.1016/j.cattod.2019.03.009
[16]
Ghogia A C, Nzihou A, Serp P, Soulantica K, Pham Minh D. Appl. Catal. A Gen., 2021, 609: 117906.

doi: 10.1016/j.apcata.2020.117906
[17]
Shi Y M, Yao N, Lu C S, Fan Y B, Liu H Z, Li X N. Prog. Chem., 2009, 21(10): 2044.
石玉梅, 姚楠, 卢春山, 范洋波, 刘化章, 李小年. 化学进展, 2009, 21(10): 2044. ).
[18]
Boudart M, McDonald M A. J. Phys. Chem., 1984, 88(11): 2185.
[19]
Khadzhiev S N. Pet. Chem., 2016, 56(6): 465.

doi: 10.1134/S0965544116060050
[20]
Chen W, Lin T J, Dai Y Y, An Y L, Yu F, Zhong L S, Li S G, Sun Y H. Catal. Today, 2018, 311: 8.

doi: 10.1016/j.cattod.2017.09.019
[21]
Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J. Am. Chem. Soc., 2006, 128(12): 3956.

doi: 10.1021/ja058282w
[22]
Chernyak S A, Suslova E V, Ivanov A S, Egorov A V, Maslakov K I, Savilov S V, Lunin V V. Appl. Catal. A Gen., 2016, 523: 221.

doi: 10.1016/j.apcata.2016.06.012
[23]
Xiong H F, Motchelaho M A M, Moyo M, Jewell L L, Coville N J. J. Catal., 2011, 278(1): 26.

doi: 10.1016/j.jcat.2010.11.010
[24]
Eschemann T O, Lamme W S, Manchester R L, Parmentier T E, Cognigni A, Rønning M, de Jong K P. J. Catal., 2015, 328: 130.

doi: 10.1016/j.jcat.2014.12.010
[25]
Luo Q X, Guo L P, Yao S Y, Bao J, Liu Z T, Liu Z W. J. Catal., 2019, 369: 143.

doi: 10.1016/j.jcat.2018.11.002
[26]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. J. Phys. Chem. C, 2014, 118(1): 268.

doi: 10.1021/jp408174w
[27]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. ChemCatChem, 2014, 6(1): 319.

doi: 10.1002/cctc.201300897
[28]
Fu T J, Lv J, Li Z H. Ind. Eng. Chem. Res., 2014, 53(4): 1342.

doi: 10.1021/ie402128y
[29]
Cheng Q P, Tian Y, Lyu S S, Zhao N, Ma K, Ding T, Jiang Z, Wang L H, Zhang J, Zheng L R, Gao F, Dong L, Tsubaki N, Li X G. Nat. Commun., 2018, 9: 3250.

doi: 10.1038/s41467-018-05755-8
[30]
Melaet G, Lindeman A E, Somorjai G A. Top. Catal., 2014, 57(6/9): 500.

doi: 10.1007/s11244-013-0206-z
[31]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. Catal. Sci. Technol., 2014, 4(3): 717.

doi: 10.1039/c3cy00729d
[32]
Fischer N, van Steen E, Claeys M. J. Catal., 2013, 299: 67.

doi: 10.1016/j.jcat.2012.11.013
[33]
Zhong M, Wang J G, Chen C B, Ma Z C, Jia L T, Hou B, Li D B. Catal. Sci. Technol., 2019, 9(21): 6037.

doi: 10.1039/c9cy01422e
[34]
Prieto G, Martínez A, ConcepciÓn P, Moreno-Tost R. J. Catal., 2009, 266(1): 129.

doi: 10.1016/j.jcat.2009.06.001
[35]
van Deelen T W, Su H, Sommerdijk N A J M, de Jong K P. Chem. Commun., 2018, 54(20): 2530.

doi: 10.1039/C7CC07741F
[36]
den Breejen J P, Sietsma J R A, Friedrich H, Bitter J H, de Jong K P. J. Catal., 2010, 270(1): 146.

doi: 10.1016/j.jcat.2009.12.015
[37]
Pestman R, Chen W, Hensen E. ACS Catal., 2019, 9(5): 4189.

doi: 10.1021/acscatal.9b00185
[38]
Herranz T, Deng X Y, Cabot A, Guo J G, Salmeron M. J. Phys. Chem. B, 2009, 113(31): 10721.

doi: 10.1021/jp901602s
[39]
Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang P, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J. Am. Chem. Soc., 2013, 135(6): 2273.

doi: 10.1021/ja3105889
[40]
Lyu S, Peng B, Kuang T, RappÉ K G, Zhang Y H, Li J L, Wang L. ACS Appl. Nano Mater., 2019, 2(4): 2266.

doi: 10.1021/acsanm.9b00187
[41]
Gnanamani M K, Jacobs G, Shafer W D, Davis B H. Catal. Today, 2013, 215: 13.

doi: 10.1016/j.cattod.2013.03.004
[42]
Karaca H, Safonova O V, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov A Y. J. Catal., 2011, 277(1): 14.

doi: 10.1016/j.jcat.2010.10.007
[43]
Tsakoumis N E, Patanou E, Lögdberg S, Johnsen R E, Myrstad R, van Beek W, Rytter E, Blekkan E A. ACS Catal., 2019, 9(1): 511.

doi: 10.1021/acscatal.8b03549
[44]
Liu J X, Su H Y, Sun D P, Zhang B Y, Li W X. J. Am. Chem. Soc., 2013, 135(44): 16284.

doi: 10.1021/ja408521w
[45]
Lyu S, Wang L, Zhang J H, Liu C, Sun J M, Peng B, Wang Y, RappÉ K G, Zhang Y H, Li J L, Nie L. ACS Catal., 2018, 8(9): 7787.

doi: 10.1021/acscatal.8b00834
[46]
Deng X, Yang D Z, Tan G G, Li X H, Zhang J W, Liu Q F, Zhang H L, Mellors N J, Xue D S, Peng Y. Nanoscale, 2014, 6(22): 13710.

doi: 10.1039/c4nr02287d pmid: 25283083
[47]
Li X, Liu X W, Jiang D, Wen X D. Journal of Fuel Chemistry and Technology, 2018, 46(4): 459.
李啸, 刘兴武, 姜东, 温晓东. 燃料化学学报, 2018, 46(4): 459.).
[48]
Karaca H, Hong J P, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Hortmann K, Safonova O V, Khodakov A Y. Chem. Commun., 2010, 46(5): 788.

doi: 10.1039/B920110F
[49]
Zhao Z A, Lu W, Yang R O, Zhu H J, Dong W D, Sun F F, Jiang Z, Lyu Y, Liu T, Du H, Ding Y J. ACS Catal., 2018, 8(1): 228.

doi: 10.1021/acscatal.7b02403
[50]
Pei Y P, Liu J X, Zhao Y H, Ding Y J, Liu T, Dong W D, Zhu H J, Su H Y, Yan L, Li J L, Li W X. ACS Catal., 2015, 5(6): 3620.

doi: 10.1021/acscatal.5b00791
[51]
Xiang Y Z, Kruse N. Nat. Commun., 2016, 7: 13058.

doi: 10.1038/ncomms13058
[52]
Zhang C, Li S G, Zhong L S, Sun Y H. J. Phys. Chem. C, 2021, 125(11): 6061.

doi: 10.1021/acs.jpcc.0c09164
[53]
Li Z J, Yu D M, Yang L Y, Cen J, Xiao K, Yao N, Li X N. ACS Catal., 2021, 11(5): 2746.

doi: 10.1021/acscatal.0c04504
[54]
Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M, Boutonnet M. Int. J. Hydrog. Energy, 2017, 42(15): 9754.

doi: 10.1016/j.ijhydene.2017.01.056
[55]
Bertella F, ConcepciÓn P, Martínez A. Catal. Today, 2017, 289: 181.

doi: 10.1016/j.cattod.2016.08.008
[56]
Wolf M, Fischer N, Claeys M. Chem Catal., 2021, 1(5): 1014.
[57]
Chen W Y, Ji J, Duan X Z, Qian G, Li P, Zhou X G, Chen D, Yuan W K. Chem. Commun., 2014, 50(17): 2142.

doi: 10.1039/c3cc48027e
[58]
Matsubu J C, Zhang S Y, DeRita L, Marinkovic N S, Chen J G, Graham G W, Pan X Q, Christopher P. Nat. Chem., 2017, 9(2): 120.

doi: 10.1038/nchem.2607 pmid: 28282057
[59]
Park H, Kim K Y, Youn D H, Choi Y H, Kim W Y, Lee J S. ChemCatChem, 2017, 9(21): 4098.

doi: 10.1002/cctc.201700613
[60]
Liu C C, He Y, Wei L, Zhang Y H, Zhao Y X, Hong J P, Chen S F, Wang L, Li J L. ACS Catal., 2018, 8(2): 1591.

doi: 10.1021/acscatal.7b03887
[61]
Hong J P, Wang B, Xiao G Q, Wang N, Zhang Y H, Khodakov A Y, Li J L. ACS Catal., 2020, 10(10): 5554.

doi: 10.1021/acscatal.0c01121
[62]
Cheng K, Subramanian V, Carvalho A, Ordomsky V V, Wang Y, Khodakov A Y. J. Catal., 2016, 337: 260.

doi: 10.1016/j.jcat.2016.02.019
[63]
Lyu S S, Cheng Q P, Liu Y H, Tian Y, Ding T, Jiang Z, Zhang J, Gao F, Dong L, Bao J, Ma Q X, Yang Q H, Li X G. Appl. Catal. B Environ., 2020, 278: 119261.

doi: 10.1016/j.apcatb.2020.119261
[64]
Li S, Yao N, Zhao F D, Li X N. Catal. Sci. Technol., 2016, 6(7): 2188.

doi: 10.1039/C5CY00854A
[65]
Han Q, Yao N, Shi Y M, Ma H F, Li X N. Catal. Commun., 2012, 22: 52.

doi: 10.1016/j.catcom.2012.02.022
[66]
Ma C C, Yao N, Han Q, Li X N. Chem. Eng. J., 2012, 191: 534.

doi: 10.1016/j.cej.2012.03.024
[67]
Yao M, Yao N, Shao Y, Han Q, Ma C C, Yuan C K, Li C G, Li X N. Chem. Eng. J., 2014, 239: 408.

doi: 10.1016/j.cej.2013.11.050
[68]
Wang J, Yao N, Liu B, Cen J, Li X N. Chem. Eng. J., 2017, 322: 339.

doi: 10.1016/j.cej.2017.04.025
[69]
Yuan C K, Yao N, Wang X D, Wang J G, Lv D Y, Li X N. Chem. Eng. J., 2015, 260: 1.

doi: 10.1016/j.cej.2014.08.079
[70]
Liu B, Yao N, Li S, Wang J, Lv D Y, Li X N. Chem. Eng. J., 2016, 304: 476.

doi: 10.1016/j.cej.2016.06.113
[71]
Dai H J. Surf. Sci., 2002, 500(1/3): 218.

doi: 10.1016/S0039-6028(01)01558-8
[72]
Stein A, Wang Z Y, Fierke M A. Adv. Mater., 2009, 21(3): 265.

doi: 10.1002/adma.200801492
[73]
Lin Q W, Zhang J, Lv W, Ma J B, He Y B, Kang F Y, Yang Q H. Small, 2020, 16(15): 1902603.

doi: 10.1002/smll.201902603
[74]
Cheng Q P, Zhao N, Lyu S S, Tian Y, Gao F, Dong L, Jiang Z, Zhang J, Tsubaki N, Li X G. Appl. Catal. B Environ., 2019, 248: 73.

doi: 10.1016/j.apcatb.2019.02.024
[75]
Dlamini M W, Phaahlamohlaka T N, Kumi D O, Forbes R, Jewell L L, Coville N J. Catal. Today, 2020, 342: 99.

doi: 10.1016/j.cattod.2019.01.070
[76]
Li X Y, Pan X L, Yu L, Ren P J, Wu X, Sun L T, Jiao F, Bao X H. Nat. Commun., 2014, 5: 3688.

doi: 10.1038/ncomms4688
[77]
Lu J Z, Yang L J, Xu B L, Wu Q, Zhang D, Yuan S J, Zhai Y, Wang X Z, Fan Y N, Hu Z. ACS Catal., 2014, 4(2): 613.

doi: 10.1021/cs400931z
[78]
Vosoughi V, Badoga S, Dalai A K, Abatzoglou N. Ind. Eng. Chem. Res., 2016, 55(21): 6049.

doi: 10.1021/acs.iecr.5b04381
[79]
Zhang H, Lancelot C, Chu W, Hong J P, Khodakov A Y, Chernavskii P A, Zheng J, Tong D G. J. Mater. Chem., 2009, 19(48): 9241.

doi: 10.1039/b911355j
[80]
Cheng K, Ordomsky V V, Legras B, Virginie M, Paul S, Wang Y, Khodakov A Y. Appl. Catal. A Gen., 2015, 502: 204.

doi: 10.1016/j.apcata.2015.06.010
[81]
Kang J C, Zhang S L, Zhang Q H, Wang Y. Angew. Chem. Int. Ed., 2009, 48(14): 2565.

doi: 10.1002/anie.200805715
[82]
Qin C, Hou B, Wang J G, Wang G, Ma Z Y, Jia L T, Li D B. ACS Appl. Mater. Interfaces, 2019, 11(37): 33886.

doi: 10.1021/acsami.9b10174
[83]
Zeng B, Hou B, Jia L T, Li D B, Sun Y H. J. Mol. Catal. A Chem., 2013, 379: 263.

doi: 10.1016/j.molcata.2013.08.008
[84]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015, 2(2): 183.

doi: 10.1093/nsr/nwv024
[85]
Guan J, Pan X L, Liu X, Bao X H. J. Phys. Chem. C, 2009, 113(52): 21687.

doi: 10.1021/jp906092c
[86]
Tavasoli A, TrÉpanier M, Dalai A K, Abatzoglou N. J. Chem. Eng. Data, 2010, 55(8): 2757.

doi: 10.1021/je900984c
[87]
Xie W, Zhang Y H, Liew K, Li J L. Sci. China Chem., 2012, 55(9): 1811.

doi: 10.1007/s11426-012-4727-2
[88]
Akbarzadeh O, Mohd Zabidi N, Abdul Wahab Y, Hamizi N, Chowdhury Z, Merican Aljunid Merican Z, Ab Rahman M, Akhter S, Rasouli E, Johan M. Symmetry, 2018, 10(11): 572.

doi: 10.3390/sym10110572
[89]
Bao J, Yang G H, Yoneyama Y, Tsubaki N. ACS Catal., 2019, 9(4): 3026.

doi: 10.1021/acscatal.8b03924
[90]
Yang W P, Li X X, Li Y, Zhu R M, Pang H. Adv. Mater., 2018: 1804740.
[91]
Wezendonk T A, Santos V P, Nasalevich M A, Warringa Q S E, Dugulan A I, Chojecki A, Koeken A C J, Ruitenbeek M, Meima G, Islam H U, Sankar G, Makkee M, Kapteijn F, Gascon J. ACS Catal., 2016, 6(5): 3236.

doi: 10.1021/acscatal.6b00426
[92]
An B, Cheng K, Wang C, Wang Y, Lin W B. ACS Catal., 2016, 6(6): 3610.

doi: 10.1021/acscatal.6b00464
[93]
Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. J. Mater. Chem. A, 2017, 5(17): 8081.

doi: 10.1039/C7TA02128C
[94]
Pei Y P, Li Z, Li Y W. Aiche J., 2017, 63(7): 2935.

doi: 10.1002/aic.15677
[95]
Zhang C H, Guo X X, Yuan Q C, Zhang R L, Chang Q, Li K, Xiao B, Liu S Y, Ma C P, Liu X, Xu Y Q, Wen X D, Yang Y, Li Y W. ACS Catal., 2018, 8(8): 7120.

doi: 10.1021/acscatal.8b01691
[96]
Sun X H, Suarez A I O, Meijerink M, van Deelen T, Ould-Chikh S, Zecevic J, de Jong K P, Kapteijn F, Gascon J. Nat. Commun., 2017, 8: 1680.

doi: 10.1038/s41467-017-01910-9
[97]
Isaeva V I, Eliseev O L, Kazantsev R V, Chernyshev V V, Davydov P E, Saifutdinov B R, Lapidus A L, Kustov L M. Dalton Trans., 2016, 45(30): 12006.

doi: 10.1039/c6dt01394e pmid: 27389315
[98]
Isaeva V I, Eliseev O L, Kazantsev R V, Chernyshev V V, Tarasov A L, Davydov P E, Lapidus A L, Kustov L M. Polyhedron, 2019, 157: 389.

doi: 10.1016/j.poly.2018.10.001
[1] Jing Wang, Nan Yao*. Ni-Based Catalysts for Syngas Methanation Reaction [J]. Progress in Chemistry, 2017, 29(12): 1509-1517.
[2] Wang Zhoujun, Fu Qiang, Bao Xinhe. Silicon Carbide as a Novel Support for Heterogeneous Catalysis [J]. Progress in Chemistry, 2014, 26(04): 502-511.
[3] . Cobalt-based Catalyst for Selective Synthesis of Clean Liquid Fuel via Fischer-Tropsch Synthesis [J]. Progress in Chemistry, 2010, 22(10): 1911-1920.
[4] Shi Yumei Yao Nan Lu Chunshan Fan Yangbo Liu Huazhang Li Xiaonian*. Highly Dispersed Supported Co Catalysts for Fischer-Tropsch Synthesis [J]. Progress in Chemistry, 2009, 21(10): 2044-2052.
[5] . Effects of Noble Metal Promoter on Supported Cobalt-Based Fischer-Tropsch Catalysts [J]. Progress in Chemistry, 2009, 21(04): 622-628.
[6] Wei Zhou*,Kegong Fang,Jiangang ,Chen,Yuhan Sun*. Effects of Water on Cobalt-Based Fischer-Tropsch Synthesis [J]. Progress in Chemistry, 2006, 18(01): 45-50.
[7] Wu Baoshan,Tian Lei,Bai Liang,Zhang Zhixin,Xiang Hongwei**,Li Yongwang. R&D of Precipitated Iron Catalysts in Fischer-Tropsch Synthesis [J]. Progress in Chemistry, 2004, 16(02): 256-.