中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1369-1383 DOI: 10.7536/PC210733 Previous Articles   Next Articles

• Review •

Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries

Fangyuan Li1, Junhao Li1, Yujie Wu1, Kaixiang Shi1, Quanbing Liu1(), Hongjie Peng2()   

  1. 1 School of Chemical Engineering and Light Industry, Guangdong University of Technology,Guangzhou 510006, China
    2 University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received: Revised: Online: Published:
  • Contact: Quanbing Liu, Hongjie Peng
  • Supported by:
    National Natural Science Foundation of China(21975056); National Natural Science Foundation of China(U1801257); National Natural Science Foundation of China(52002079)
Richhtml ( 36 ) PDF ( 582 ) Cited
Export

EndNote

Ris

BibTeX

“Yolk-shell” nanomaterials with adjustable “yolk”, "shell" and "cavity" structures are regarded as "nanoreactors" and have outstanding performance in the application fields of catalysis and energy storage. Especially for electrochemical energy storage and conversion, this type of material has a considerable specific surface area and a special core-shell structure, which could alleviate the volume change of the electrode, provide fast ions/electron transport channels, enhance the adsorption of intermediates, and strengthen the conversion reactions during the charge/discharge process. It can significantly improve electrode stability, rate and cycling performance, which is a relatively ideal electrode material. This article focuses on the application of “yolk-shell” nanostructured electrodes in the field of secondary batteries including lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries and summarizes the design and synthesis strategies of this type of nanostructured electrodes, including template method, Ostwald ripening, Galvanic replacement, and Kirkendall effect, presents the advantages and disadvantages of various methods for electrochemical applications, and finally discusses prospects of yolk-shell structure in research and applications of lithium/sodium-based and lithium-sulfur secondary batteries.

Contents

1 Introduction

2 Template methods

2.1 SiO2 as a hard template

2.2 Metal oxide as a hard template

2.3 Carbon as a hard template

2.4 Soft templates

3 Self-assemble methods

3.1 Ostwald ripening to synthesis of yolk-shell structure

3.2 Galvanic replacement to the synthesis of yolk-shell structure

3.3 Kirkendall effect on synthesis of yolk-shell structure

4 The applications of yolk-shell structure in batteries

4.1 Yolk-shell in lithium-ion batteries

4.2 Yolk-shell in sodium-ion batteries

4.3 Yolk-shell in lithium-sulfur batteries

5 Conclusion and outlook

Fig. 1 Schematic of the preparation of yolk-shell structure using SiO2 as the hard template[21]. Copyright 2017, Elsevier
Fig. 2 Schematic of the preparation of yolk-shell structure via partially etched SiO2 template[34]. Copyright 2020, RSC
Fig. 3 Schematic of the preparation of yolk-shell structure using polystyrene as pyrolysis template[18]. Copyright 2018, RSC
Fig. 4 Schematic diagram of the formation mechanism of yolk-shell Sn@Void@C microspheres[42]. Copyright 2015, Wiley
Fig. 5 Schematic of the preparation of yolk-shell structure via Ostwald ripening[43]. Copyright 2015, ACS
Fig. 6 Schematic of the preparation of yolk-shell structure via galvanic replacement[49]. Copyright 2017, ACS
Fig. 7 Formation mechanism of a hollow SnO2 nanosphere in the nanofiber by the nanoscale Kirkendall effect and its chemical conversion process in the surface region of a sphere[52]. Copyright 2015, Wiley
Table 1 Synthesis advantages and disadvantages of template method and self-template method
Fig. 8 Highly monodisperse dumbbell-like yolk-shell MnO/carbon microspheres for lithium storage and their lithiation evolution[74]. (A) schematic of the fabrication procedure; (B) the cyclic voltammetry curve; (C) the charge discharge voltage profiles at 0.26 C; (D) the cycling performance at 1.32 C and (E) the rate performance. Copyright 2020, Elsevier
Fig. 9 Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion Batterie[82]. (a) Schematic illustration of the synthesis process; (b) cyclic voltammetry curves; (c) charge/discharge curves; (d) cycling stability at 1 A·g-1; (e) rate performance. Copyright 2020, ACS
Fig. 10 Yolk-shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li-S batteries and electrochemical performance[7]. (a) Schematic illustration of the synthesis process; (b) charge/discharge curves, (c) cycling stability, (d) rate performance. Copyright 2017, RSC
[1]
Liu J, Qiao S Z, Chen J S, (David) Lou X W, Xing X R, (Max) Lu G Q. Chem. Commun., 2011, 47(47): 12578.

doi: 10.1039/c1cc13658e
[2]
Zhou W D, Yu Y C, Chen H, DiSalvo F J, Abruña H D. J. Am. Chem. Soc., 2013, 135(44): 16736.

doi: 10.1021/ja409508q
[3]
Liu J, Qiao S Z, Budi Hartono S, Lu G Q. Angew. Chem. Int. Edit., 2010, 49(29): 4981.

doi: 10.1002/anie.201001252
[4]
Yang J P, Wang Y X, Chou S L, Zhang R Y, Xu Y F, Fan J W, Zhang W X, Liu H K, Zhao D Y, Dou S X. Nano Energy, 2015, 18: 133.

doi: 10.1016/j.nanoen.2015.09.016
[5]
Yu L, Guan B Y, Xiao W, Lou X W D. Adv. Energy Mater., 2015, 5(21): 1500981.

doi: 10.1002/aenm.201500981
[6]
Pan Y M, Zhang J J, Lu H B. Chem. Eur. J., 2017, 23(41): 9937.

doi: 10.1002/chem.201701691
[7]
Hong Y J, Lee J K, Kang Y C. J. Mater. Chem. A, 2017, 5(3): 988.

doi: 10.1039/C6TA08328E
[8]
Zhang W C, Yang C, Ding B C, Peng J, Xu F, Zheng M T, Hu H, Xiao Y, Liu Y L, Liang Y R. Chem. Commun., 2020, 56(8): 1215.

doi: 10.1039/C9CC07625E
[9]
Wang S H, Teng J, Xie Y Y, Wei Z W, Fan Y N, Jiang J J, Wang H P, Liu H G, Wang D W, Su C Y. J. Mater. Chem. A, 2019, 7(8): 4036.

doi: 10.1039/C8TA11007G
[10]
Lou X W D, Archer L A, Yang Z C. Adv. Mater., 2008, 20(21): 3987.

doi: 10.1002/adma.200800854
[11]
Wang X J, Feng J, Bai Y C, Zhang Q, Yin Y D. Chem. Rev., 2016, 116(18): 10983.

doi: 10.1021/acs.chemrev.5b00731
[12]
Ren X C, Zhai Y J, Zhu L, He Y Y, Li A H, Guo C L, Xu L Q. ACS Appl. Mater. Inter., 2016, 8(27): 17205.

doi: 10.1021/acsami.6b03257
[13]
Zhao Y C, Li X, Liu J D, Wang C G, Zhao Y Y, Yue G H. ACS Appl. Mater. Inter., 2016, 8(10): 6472.

doi: 10.1021/acsami.5b12562
[14]
Dai R L, Sun W W, Lv L P, Wu M H, Liu H, Wang G X, Wang Y. Small, 2017, 13(27): 1700521.

doi: 10.1002/smll.201700521
[15]
Zhang Q, Wang W S, Goebl J, Yin Y D. Nano Today, 2009, 4(6): 494.

doi: 10.1016/j.nantod.2009.10.008
[16]
Ding Y B, Tang Y H, Yang L M, Zeng Y X, Yuan J L, Liu T, Zhang S Q, Liu C B, Luo S L. J. Mater. Chem. A, 2016, 4(37): 14307.

doi: 10.1039/C6TA05267C
[17]
Li Q D, Li L, Wu P J, Xu N, Wang L, Li M, Dai A, Amine K, Mai L Q, Lu J. Adv. Energy Mater., 2019, 9(43): 1901153.

doi: 10.1002/aenm.201901153
[18]
Huang X K, Sui X Y, Yang H, Ren R, Wu Y P, Guo X R, Chen J H. J. Mater. Chem. A, 2018, 6(6): 2593.

doi: 10.1039/C7TA08283E
[19]
Xiang Y, Chen Z, Chen C M, Wang T H, Zhang M. J. Alloys Compd., 2017, 724: 406.

doi: 10.1016/j.jallcom.2017.07.052
[20]
Stöber W, Fink A, Bohn E. J. Colloid Inter. Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5
[21]
Xie J, Tong L, Su L W, Xu Y W, Wang L B, Wang Y H. J. Power Sources, 2017, 342: 529.

doi: 10.1016/j.jpowsour.2016.12.094
[22]
Hu L, Luo B, Wu C H, Hu P F, Wang L Z, Zhang H J. J. Energy Chem., 2019, 32: 124.

doi: 10.1016/j.jechem.2018.07.008
[23]
Zhou Z W, Pan L, Liu Y T, Zhu X D, Xie X M. Chin. Chem. Lett., 2019, 30(3): 610.

doi: 10.1016/j.cclet.2018.08.018
[24]
Wang Y Q, Yin X, Shen H B, Jiang H, Yu J W, Zhang Y F, Li D W, Li W Z, Li J. Int. J. Hydrogen. Energ., 2018, 43(45): 20687.

doi: 10.1016/j.ijhydene.2018.09.140
[25]
Yang F H, Gao H, Hao J N, Zhang S L, Li P, Liu Y Q, Chen J, Guo Z P. Adv. Funct. Mater., 2019, 29(16): 1808291.

doi: 10.1002/adfm.201808291
[26]
Li S M, Li B, Zhong Y T, Pan Z H, Xu M Q, Qiu Y C, Huang Q M, Li W S. Mater. Chem. Phys., 2019, 222: 256.

doi: 10.1016/j.matchemphys.2018.10.015
[27]
Zhang H W, Zhou L, Noonan O, Martin D J, Whittaker A K, Yu C Z. Adv. Funct. Mater., 2014, 24(27): 4337.

doi: 10.1002/adfm.201400178
[28]
Li X F, Chi M F, Mahurin S M, Liu R, Chuang Y J, Dai S, Pan Z W. Carbon, 2016, 101: 57.

doi: 10.1016/j.carbon.2016.01.043
[29]
Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Lett., 2012, 12(6): 3315.

doi: 10.1021/nl3014814
[30]
Chen X, Chen C, Zhang Y, Zhang X F, Yang D, Dong A G. Nano Res., 2019, 12(3): 631.

doi: 10.1007/s12274-018-2270-y
[31]
Jiao Z, Gao Y, Liu S, Huang S H, Jiang Y, Chen Z W, Zhao B. Electrochim. Acta, 2018, 283: 1702.

doi: 10.1016/j.electacta.2018.07.143
[32]
Lu Y, Chang P, Wang L B, Nzabahimana J, Hu X L. Funct. Mater. Lett., 2019, 12(1): 1850094.

doi: 10.1142/S1793604718500947
[33]
Mo R W, Rooney D, Sun K N. iScience, 2018, 9: 521.

doi: 10.1016/j.isci.2018.11.013
[34]
Li X Q, Xing Y F, Xu J, Deng Q B, Shao L H. Chem. Commun., 2020, 56(3): 364.

doi: 10.1039/C9CC07997A
[35]
Pan L, Wang H B, Gao D C, Chen S Y, Tan L, Li L. Chem. Commun., 2014, 50(44): 5878.

doi: 10.1039/C4CC01728E
[36]
Yang T Y, Zhong Y J, Liang J, Rahman M M, Lei W W, Chen Y, Monteiro M J, Shao Z P, Liu J. Part. Part. Syst. Charact., 2017, 34(4): 1600281.

doi: 10.1002/ppsc.201600281
[37]
Mi H W, Yang X D, Li Y L, Zhang P X, Sun L N. Chem. Eng. J., 2018, 351: 103.

doi: 10.1016/j.cej.2018.06.065
[38]
Pang H C, Cheng P, Yang H B, Lu J L, Guo C X, Ning G L, Li C M. Chem. Commun., 2013, 49(15): 1536.

doi: 10.1039/c2cc38244j
[39]
Lim J, Um J H, Ahn J, Yu S H, Sung Y E, Lee J K. Chem. Eur. J., 2015, 21(21): 7954.

doi: 10.1002/chem.201406667
[40]
Liu Z, Luo Y W, Zhou M J, Wang W Q, Gan N, Okada S, Yamaki J I. Electrochemistry, 2015, 83(12): 1067.

doi: 10.5796/electrochemistry.83.1067
[41]
Su X R, Huang J, Yan B Y, Hong Z P, Li S Y, Pang B C, Luo Y L, Feng L, Zhou M J, Xia Y Y. RSC Adv., 2018, 8(55): 31388.

doi: 10.1039/C8RA05871G
[42]
Hong Y J, Kang Y C. Small, 2015, 11(18): 2157.

doi: 10.1002/smll.201402994
[43]
Jiang L, Qu Y, Ren Z Y, Yu P, Zhao D D, Zhou W, Wang L, Fu H G. ACS Appl. Mater. Inter., 2015, 7(3): 1595.

doi: 10.1021/am5070393
[44]
Lou X W, Wang Y, Yuan C, Lee J Y, Archer L A. Adv. Mater., 2006, 18(17): 2325.

doi: 10.1002/adma.200600733
[45]
Feng Y F, Shao Y X, Chen X D, Zhang Y D, Liu Q B, He M Y, Li H. ACS Appl. Energy Mater., 2021, 4(1): 633.

doi: 10.1021/acsaem.0c02521
[46]
Qiu W D, Jiao J Q, Xia J, Zhong H M, Chen L P. Chem. Eur. J., 2015, 21(11): 4359.

doi: 10.1002/chem.201405821
[47]
Li J H, Li F Y, Liao J Y, Li H, Dang D, Liu Q B, Peng H J. Adv. Mater. Inter., 2020, 7(14): 2000667.

doi: 10.1002/admi.202000667
[48]
Zhang Z L, Ji Y J, Li J, Tan Q Q, Zhong Z Y, Su F B. ACS Appl. Mater. Inter., 2015, 7(11): 6300.

doi: 10.1021/acsami.5b00617
[49]
Liu J, Yu L T, Wu C, Wen Y R, Yin K B, Chiang F K, Hu R Z, Liu J W, Sun L T, Gu L, Maier J, Yu Y, Zhu M. Nano Lett., 2017, 17(3): 2034.

doi: 10.1021/acs.nanolett.7b00083
[50]
Skrabalak S E, Chen J Y, Sun Y G, Lu X M, Au L, Cobley C M, Xia Y N. Acc. Chem. Res., 2008, 41(12): 1587.

doi: 10.1021/ar800018v
[51]
Guo W X, Sun W W, Wang Y. ACS Nano, 2015, 9(11): 11462.

doi: 10.1021/acsnano.5b05610
[52]
Cho J S, Kang Y C. Small, 2015, 11(36): 4673.

doi: 10.1002/smll.201500940
[53]
Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304(5671): 711.

doi: 10.1126/science.1096566
[54]
Xie Q S, Lin L, Ma Y T, Zeng D Q, Yang J R, Huang J, Wang L S, Peng D L. Electrochim. Acta, 2017, 226: 79.

doi: 10.1016/j.electacta.2016.12.187
[55]
Yin J Z, Zhang Y, Lu Q Y, Wu X L, Jiang Z J, Dang L Y, Ma H F, Guo Y Y, Gao F, Yan Q Y. J. Mater. Chem. A, 2017, 5(25): 12757.

doi: 10.1039/C7TA03929H
[56]
Li J F, Wang J Z, Liang X, Zhang Z J, Liu H K, Qian Y T, Xiong S L. ACS Appl. Mater. Inter., 2014, 6(1): 24.

doi: 10.1021/am404841t
[57]
Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. Small, 2019, 15(10): 1805460.

doi: 10.1002/smll.201805460
[58]
Bin D S, Xu Y S, Guo S J, Sun Y G, Cao A M, Wan L J. Acc. Chem. Res., 2021, 54(1): 221.

doi: 10.1021/acs.accounts.0c00613
[59]
Mo R W, Rooney D, Sun K N. iScience, 2018, 9: 521.

doi: 10.1016/j.isci.2018.11.013
[60]
He J R, Luo L, Chen Y F, Manthiram A. Adv. Mater., 2017, 29(34): 1702707.

doi: 10.1002/adma.201702707
[61]
Na Z L, Yao R F, Yan Q, Wang X R, Sun X D, Wang X X. Electrochim. Acta, 2021, 367: 137464.

doi: 10.1016/j.electacta.2020.137464
[62]
Lou Y, Di H F, Li C G, Liang C, Yu Y, Shi Z, Zhang D, Chen X B, Feng S H. Electrochim. Acta, 2019, 318: 542.

doi: 10.1016/j.electacta.2019.06.083
[63]
Jo M S, Ghosh S, Jeong S M, Kang Y C, Cho J S. Nano Micro Lett., 2019, 11(1): 1.
[64]
Leng J, Wang Z X, Li X H, Guo H J, Yan G C, Hu Q Y, Peng W J, Wang J X. J. Mater. Chem. A, 2019, 7(10): 5803.

doi: 10.1039/c8ta12399c
[65]
Fu S D, Yu Q, Liu Z H, Hu P, Chen Q, Feng S H, Mai L Q, Zhou L. J. Mater. Chem. A, 2019, 7(18): 11234.

doi: 10.1039/C9TA02342A
[66]
Yuan H D, Nai J W, Fang Y J, Lu G X, Tao X Y, Lou X W D. Angew. Chem. Int. Ed., 2020, 59(37): 15839.

doi: 10.1002/anie.202001989
[67]
Wu X Y, Qian C, Wu H Y, Xu L, Bu L L, Piao Y Z, Diao G W, Chen M. Chem. Commun., 2020, 56(55): 7629.

doi: 10.1039/D0CC02443K
[68]
Zhou Z P, Chen F, Wu L, Kuang T R, Liu X H, Yang J T, Fan P, Fei Z D, Zhao Z P, Zhong M Q. Electrochim. Acta, 2020, 332: 135490.

doi: 10.1016/j.electacta.2019.135490
[69]
Ma X D, Fang K X, Yang X Y, Jiang J Y, Meng L K, Wu X H. J. Alloys Compd., 2020, 818: 152859.

doi: 10.1016/j.jallcom.2019.152859
[70]
Zhong D, Chen J W, Zhang J, Luo Y, Li Z J, Cheng L, Chen Y H, Wang G, Wang R L. Mater. Res. Express, 2019, 6(8): 085058.

doi: 10.1088/2053-1591/ab1f62
[71]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48): 1606823.

doi: 10.1002/adma.201606823
[72]
Li Q D, Li L, Wu P J, Xu N, Wang L, Li M, Dai A, Amine K, Mai L Q, Lu J. Adv. Energy Mater., 2019, 9(43): 1901153.

doi: 10.1002/aenm.201901153
[73]
Zhang L, Wang C R, Dou Y H, Cheng N Y, Cui D D, Du Y, Liu P R, Al-Mamun M, Zhang S Q, Zhao H J. Angew. Chem. Int. Ed., 2019, 58(26): 8824.

doi: 10.1002/anie.201903709 pmid: 31050110
[74]
Chen J J, Yang K, Yu H Y, Shah T, Zhang Q Y, Zhang B L. Carbon, 2020, 170: 37.

doi: 10.1016/j.carbon.2020.08.005
[75]
Park J S, Hong Y J, Kim J H, Kang Y C. J. Power Sources, 2020, 461: 228115.

doi: 10.1016/j.jpowsour.2020.228115
[76]
Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys. Chem. Chem. Phys., 2014, 16(29): 15007.

doi: 10.1039/c4cp00826j
[77]
Liu Z M, Lu T C, Song T, Yu X Y, Lou X W D, Paik U. Energy Environ. Sci., 2017, 10(7): 1576.

doi: 10.1039/C7EE01100H
[78]
Man Z M, Li P, Zhou D, Wang Y Z, Liang X H, Zang R, Li P X, Zuo Y Q, Lam Y M, Wang G X. Nano Lett., 2020, 20(5): 3769.

doi: 10.1021/acs.nanolett.0c00789
[79]
Zhang Z Z, Du Y C, Wang Q C, Xu J Y, Zhou Y N, Bao J C, Shen J, Zhou X S. Angew. Chem. Int. Ed., 2020, 59(40): 17504.

doi: 10.1002/anie.202008318
[80]
Xiao S H, Li Z Z, Liu J T, Song Y S, Li T S, Xiang Y, Chen J S, Yan Q Y. Small, 2020, 16(41): 2002486.

doi: 10.1002/smll.202002486
[81]
Zhao W X, Wang X D, Ma X Q, Yue L C, Liu Q, Luo Y L, Liu Y, Asiri A M, Sun X P. J. Mater. Chem. A, 2021, 9(28): 15807.

doi: 10.1039/D1TA04386B
[82]
Yang H, Chen L W, He F X, Zhang J Q, Feng Y Z, Zhao L K, Wang B, He L X, Zhang Q B, Yu Y. Nano Lett., 2020, 20(1): 758.

doi: 10.1021/acs.nanolett.9b04829 pmid: 31868367
[83]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.
[84]
Wang R X, Wang K L, Gao S, Jiang M, Zhou M, Cheng S J, Jiang K. Nanoscale, 2017, 9(39): 14881.

doi: 10.1039/C7NR04320A
[85]
Park G D, Hong J H, Lee J K, Kang Y C. Nanoscale, 2019, 11(2): 631.

doi: 10.1039/c8nr08638a pmid: 30564807
[86]
Park S K, Lee J K, Kang Y C. Adv. Funct. Mater., 2018, 28(18): 1705264.

doi: 10.1002/adfm.201705264
[87]
Jin Z S, Liang Z M, Zhao M, Zhang Q, Liu B Q, Zhang L Y, Chen L H, Li L, Wang C G. Chem Eng J, 2020, 394: 124983.

doi: 10.1016/j.cej.2020.124983
[88]
Liu Y J, Wang W Q, Chen Q D, Xu C, Cai D P, Zhan H B. Inorg. Chem., 2019, 58(2): 1330.

doi: 10.1021/acs.inorgchem.8b02897
[89]
Sun W W, Liu C, Li Y J, Luo S Q, Liu S K, Hong X B, Xie K, Liu Y M, Tan X J, Zheng C M. ACS Nano, 2019, 13(10): 12137.

doi: 10.1021/acsnano.9b06629
[90]
Zhang X L, Zhang P, Zhang S J, Zhang Y S, Hou R H, Liu K L, Miao F J, Shao G S. J. Energy Chem., 2020, 51: 378.

doi: 10.1016/j.jechem.2020.03.065
[91]
Zhang R H, Wu M C, Fan X Z, Jiang H R, Zhao T S. J. Energy Chem., 2021, 55: 136.

doi: 10.1016/j.jechem.2020.06.039
[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Huang Zhao, Wang Dan, Zhang Chunming, He Dannong. Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material [J]. Progress in Chemistry, 2014, 26(12): 1914-1923.
[3] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.
[4] He Hanna, Wang Haiyan, Tang Yougen, Liu Younian. Current Studies of Anode Materials for Sodium-Ion Battery [J]. Progress in Chemistry, 2014, 26(04): 572-581.
[5] Qiu Weihua, Yan Kun, Lian Fang, Qiao Yafei. Application of Boron-Based Lithium Salt for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 357-365.
[6] Zhang Lianqi, Xiao Chengwei, Yang Ruijuan. Ordered/Disordered Rocksalt Structured Li1+xM1-xO2 Cathode Materials for Li-Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 410-417.