中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1406-1416 DOI: 10.7536/PC190306 Previous Articles   Next Articles

Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries

Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao**()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Online: Published:
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)
Richhtml ( 6 ) PDF ( 916 ) Cited
Export

EndNote

Ris

BibTeX

Given their high theoretical energy density and environment compatibility, lithium-air batteries have been considered as possible alternatives to current vehicles-used Li-ion batteries. Currently lithium-air batteries still have quite a few problems and challenges to overcome, as for cathode electrodes, the development of lithium-air battery technology is hindered by air electrode with improved activity. Thus, the preparation of the high-efficiency cathode materials is still challenging. As one of the most attractive cathode materials for lithium-air batteries, carbon-based catalysts(cathode materials) have received extensive attention and research in recent years. In this paper, based on the comprehensive analysis of our group’s achievements, the recent progress of cathode catalyst for non-aqueous lithium-air batteries is briefly introduced, including porous carbon-based materials, graphene-based materials, and doped carbon materials. In every section, we also attempt to propose the future development of carbon-based cathode materials for the next stage.

Fig. 1 Energy densities(Wh·kg-1) for various types of batteries(data from ref 2,6,7)
Fig. 2 Schematic diagram of non-aqueous lithium-air batteries
Fig. 3 (a) Model for the structure of 3DOM carbon.(b) Simplified 2D representation of the formation and accumulation of byproducts on 3DOM carbon with large(top) and small pores(bottom).(c) Cycling performance of bare 3DOM carbon of different pore sizes: 3DOM carbon with 35 nm pores(black) and 12 nm pores with high(green) and low(red) wall densities. Capacity is limited to 500 mAh·gcarbon-1, rate=100 mA·gcarbon-1.(d) Discharge/charge curves normalized to pore volumes[51]
Fig. 4 The(a) terminal voltage,(b)correlation between specific capacities and cycle number of the Li-O2 batteries with various catalysts[58]
Fig. 5 (a) Voltage profiles of RMCNT monolith electrode at 1.5 mA·cm-2 with cutoff capacities of 3.0 mAh·cm-2(purple) and 4.5 mAh·cm-2(blue).(b) Voltage profiles of CNT monolith electrode and RMCNT monolith electrode. SEM images of CNT(c),and RMCNT(e) electrodes after discharging. Chemical analysis of the electrode after discharging by XPS: CNT(d) and of RMCNT(f)[68]
Fig. 6 (a)Discharge-charge profiles of Li-O2 cells using the nanoporous graphene electrode(the cells were tested at 2.3~4.6 V with a current density of 200 mAh·g-1).(b) Cycling stability of the nanoporous N- and S-doped graphene-based Li-O2 cells[73]
Fig. 7 (a) SEM image of a VA-NCCF array grown on a piece of Si wafer.(b) TEM image of an individual VA-NCCF.(c) The sketch of Li2O2 grown on a coral-like carbon fiber.(d) Rate performance of the VA-NCCF electrode.(e) TEM image of a discharged catalyst fiber(blue and red arrows indicate spherical- and spindle-shaped Li2O2 particles, respectively[84]
[1]
Lim Y J, Kim H W, Lee S S, Kim H J, Kim J K, Jung Y G, Kim Y . ChemPlusChem., 2015,80:1100.
[2]
Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L J . Adv. Mater., 2018,30:1705575.
[3]
Gockeln M, Pokhrel S, Meierhofer F, Schowalter M, Rosenauer A, Fritsching U, Busse M, Mädler L, Kun R . J. Power Sources, 2018,374:97.
[4]
Shi Y, Zhou X Y, Zhang J, Bruck A M, Bond A C, Marschilok A C, Takeuchi K J, Takeuchi E S, Yu G H . Nano Lett., 2017,17:1906.
[5]
Scrosati B, Garche J . J. Power Sources, 2010,195:2419.
[6]
Fu J, Cano Z, Park M G, Yu A, Fowler M, Chen Z W . Adv. Mater., 2017,29:1604685.
[7]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M, , Nat. Mater., 2012,11:19.
[8]
易罗财(Yi L C), 次素琴(Ci S Q), 孙成丽(Sun C L), 温珍海(Wen Z H) . 化学进展 (Progress in Chemistry), 2016,28(8):1251.
[9]
Zhang P, Zhao Y, Zhang X B . Chem. Soc. Rev., 2018,47:2921.
[10]
Tan P, Wei Z H, Shyy W, Zhao T S, Zhu X B . Energy Environ. Sci., 2016,9:1783.
[11]
Abraham K M, Jiang Z . J. Electrochem. Soc., 1996,143:1.
[12]
Chen Y H, Freunberger S A, Peng Z Q, Fontaine O, Bruce P G . Nat. Chem., 2013,5:489.
[13]
Xu D, Wang Z L, Xu J J, Zhang L L, Zhang X B . Chem. Commun., 2012,48:6948.
[14]
Trahan M J, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M . J. Electrochem. Soc., 2013,160:259.
[15]
Chen Y, Freunberger S A, Peng Z Q, Bardé F, Bruce P G . J. Am. Chem. Soc., 2012,134:7952.
[16]
Wang F, Chen H Z, Wu Q X, Mei R, Huang Y, Li X, Luo Z K . ACS Omega, 2017,2:236.
[17]
Walker W, Giordani V, Uddin J, Bryantsev V S, Chase G V, Addison D . J. Am. Chem. Soc., 2013,135:2076.
[18]
Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K . Angew. Chem. Int. Ed., 2014,126:4007.
[19]
Liang Z J, Lu Y C . J. Am. Chem. Soc., 2016,138:7574.
[20]
Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G . Angew. Chem., Int. Ed., 2011,50:8609.
[21]
Qiao Y, He Y B, Wu S C, Jiang K Z, Li X, Guo S H, He P, Zhou H S . ACS Energy Lett., 2018,3:463.
[22]
Qiao Y, Wu S C, Sun Y, Guo S H, Yi J, He P, Zhou H S . ACS Energy Lett., 2017,2:1869.
[23]
Song K, Agyeman D A, Park M H, Yang J, Kang Y M . Adv. Mater., 2017,29:1606572.
[24]
Tan P, Chen B, Xu H R, Zhang H C, Cai W Z, Ni M, Ni M L, Shao Z P . Energy Environ. Sci., 2017,10:2056.
[25]
McCloskey B D, Scheffler R, Speidel A, Girishkumar G, Luntz A C . J. Phys. Chem. C, 2012,116:23897.
[26]
Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G . J. Am. Chem. Soc., 2006,128:1390.
[27]
Zhai D Y, Wang H H, Yang J B, Lau K C, Li K X, Amine K, Curtiss L A . J. Am. Chem. Soc., 2013,135:15364.
[28]
Peng Z Q, Freunberger S A, Chen Y H, Bruce P G . Science, 2012,337:563.
[29]
Xia C, Kwok C Y, Nazar L F . Science, 2018,361:777.
[30]
Xu J J, Wang Z L, Xu D, Zhang L L, Zhang X B . Nat. Commun., 2013,4:2438.
[31]
Lin X D, Yuan R M, Cai S R, Jiang Y H, Lei J, Liu S G, Wu Q H, Liao H G, Zheng M S, Dong Q F . Adv. Energy Mater., 2018,8:1800089.
[32]
Xu J J, Chang Z W, Wang Y, Liu D P, Zhang Y, Zhang X B . Adv. Mater., 2016,43:9620.
[33]
McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C . J. Phys. Chem. Lett., 2012,8:997.
[34]
Belova A I, Kwabi D G, Yashina L V, Shao-Horn Y, Itkis D M . J. Phys. Chem. C, 2017,3:1569.
[35]
Yao X H, Dong Q, Cheng Q M, Wang D W . Angew. Chem., Int. Ed., 2016,38:11344.
[36]
Gong Y, Ding W. Li Z P, Su R, Zhang X L, Wang J, Zhou J G, Wang Z W, Gao Y H, Li S Q, Guan P F, Wei Z D, Sun C W . ACS Catal., 2018,8:4082.
[37]
Meng W, Wen L, Song Z H, Cao N, Qin X . J. Solid State Electrochem., 2017,21:665.
[38]
Zhang J T, Zhao Z H, Xia Z H, Dai L M . Nat. Nanotechnol., 2015,10:444.
[39]
Zeng X Y, You C H, Leng L M, Dang D, Qiao X C, Li X H, Li Y W, Liao S J, Adzic R R . J. Mater. Chem. A, 2015,3:11224.
[40]
Li Q, Xu P. Gao W, Ma S G, Zhang G Q, Cao R G, Cho J, Wang H L, Wu G . Adv. Mater., 2014,26:1378.
[41]
Li Y, Fu Z Y, Su B L . Adv. Funct. Mater., 2012,22:4634.
[42]
Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo S J, Yang H . Adv. Energy Mater., 2018,8:1800171.
[43]
Li Y, Wang G L. Wei T, Fan Z J, Yan P . Nano Energy, 2016,19:165.
[44]
Pang J, Zhang W F. Zhang H, Zhang J L, Zhang H M, Cao G P, Han M F, Yang Y S . Carbon, 2018,132:280.
[45]
Borghei M, Laocharoen N, Kibena-Põldsepp E, Johansson L S, Campbell J, Kauppinen E, Tammeveski K, Rojas O J . Appl. Catal. B, 2017,204:394.
[46]
Yin W, Shen Y, Zou F, Hu X L, Chi B, Huang Y H . ACS Appl. Mater. Interfaces, 2015,7:4947.
[47]
Zhong M, Zhang X, Yang D H, Zhao B, Xie Z J, Zhou Z, Bu X H . Inorg. Chem. Front., 2017,4:1533.
[48]
Wu D F, Liang Z B, Zou R Q, Xu Q . Joule, 2018,2:2235.
[49]
Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang, L J, Wang Y G, Li Q W . Adv. Mater., 2014,26:3258.
[50]
Cao L J, Lv F C, Liu Y, Wang W X, Huo Y F, Fu X Z, Sun R, Lu Z G . Chem. Commun., 2015,51:4364.
[51]
Xie J, Yao X H, Cheng Q M, Madden L P, Dornath P, Chang C C, Fan W, Wang D W . Angew. Chem., Int. Ed., 2015,127:4373.
[52]
Sun B, Chen S Q, Liu H, Wang G X . Adv. Funct. Mater., 2015,25:4436.
[53]
Zhang X L, Gao R, Li Z Y, Hu Z B, Liu H Y, Liu X F . Electrochimica Acta, 2016,201:134.
[54]
Wang M, Yao Y, Tang Z W, Zhao T, Wu F, Yang Y F, Huang Q F . ACS Appl. Mater. Interfaces, 2018,10:32212.
[55]
Sun K L, Li J, Huang L L, Ji S, Kannan P, Li D, Liu L N, Liao S J . J. Power Sources, 2019,412:433.
[56]
Zhu C L, Du L, Luo J M, Tang H B, Cui Z M, Song H Y, Liao S J . J. Mater. Chem. A, 2018,6:14291.
[57]
Li Y L, Wang J J, Li X F, Geng D S, Li R Y, Sun X L . Chem. Commun., 2011,47:9438.
[58]
Leng L M, Li J, Zeng X Y, Song H Y, Shu T, Wang H S, Liao S J . J. Power Sources, 2017,337:173.
[59]
Leng L M, Zeng X Y, Song H Y, Shu T, Wang H S, Liao S J . J. Mater. Chem. A, 2015,3:15626.
[60]
Zeng X Y, Leng L M, Liu F F, Wang G H, Dong Y Y, Du L, Liu L N, Liao S J . Electrochim. Acta, 2016,200:231.
[61]
El-Kady M F, Shao Y, Kaner R B , Nat. Rev. Mater., 2016,1:16033.
[62]
Kim D, Kim M, Kim D W, Suk J, Park O, Kang Y . Carbon, 2015,93:625.
[63]
Kim D Y, Kim M, Kim D W, Suk J, Park J J, Park O, Kang Y . Carbon, 2016,100:265.
[64]
Balaish M, Ein E Y . J. Power Sources, 2018,379:219.
[65]
Ma S C, Wu Y, Wang J W, Zhang Y, Zhang Y, Yan X X, Wei Y, Liu P, Wang J P, Jiang K L, Fan S S, Xu Y, Peng Z Q . Nano Lett., 2015,15:8084.
[66]
Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z . Angew. Chem., Int. Ed., 2013,25:3192.
[67]
Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, Bruce P G . J. Am. Chem. Soc., 2013,135:494.
[68]
Lee Y J, Park S H, Kim S H, Ko Y, Kang K, Lee Y J . ACS Catal., 2018,8:2923.
[69]
Yin Y B, Xu J J, Liu Q C, Zhang X B . Adv. Mater., 2016,34:7494.
[70]
Zhang X, Wang C Y, Chen Y N, Wang X G, Xie Z J, Zhou Z . J. Power Sources, 2018,377:136.
[71]
Gong K P, Du F, Xia Z H, Durstock M, Dai L M . Science, 2009,323:760.
[72]
Dai L M, Xue Y H, Qu L T, Choi H J, Baek J B . Chem. Rev., 2015,115:4823.
[73]
Han J H, Guo X W, Ito Y, Liu P, Hojo D, Aida T, Hirata A, Fujita T, Adschiri T, Zhou H S, Chen M W . Adv. Energy Mater., 2016,6:1501870.
[74]
Crespiera S M, Amantia D, Knipping E, Aucher C, Aubouy L, Amici J, Zeng J, Francia C, Bodoardo S . RSC Adv., 2016,6:57335.
[75]
Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B . Angew. Chem., Int. Ed., 2013,14:3887.
[76]
Wang G H, Li J, Liu M R, Du L, Liao S J . ACS Appl. Mater. Interfaces, 2018,10:32133.
[77]
Xu J J, Wang Z L, Xu D, Meng F Z, Zhang X B . Energy Environ. Sci., 2014,7:2213.
[78]
Kim G P, Lim D, Park I, Park H, Shim S E, Baeck S H . J. Power Sources, 2016,324:687.
[79]
Luo C S, Sun H, Jiang Z L, Guo H L, Gao M Y, Wei M H, Jiang Z M, Zhou H J, Sun S G . Electrochim. Acta, 2018,282:56.
[80]
Zou L, Jiang Y X, Cheng J F, Chen Y, Chi B, Pu J, Jian L . Electrochim. Acta, 2018,262:97.
[81]
Lai Y Q, Chen W, Zhang Z, Qu Y H, Gan Y Q, Li J . Electrochim. Acta, 2016,191:733.
[82]
Liu T, Zhang X H, Huang T, Yu A S . Nanoscale, 2018,10:15763.
[83]
Jung J W, Choi D W, Lee C K, Yoon K R, Yu S, Cheong J Y, Kim C, Cho S, Park J S, Park Y J, Kim D . Nano Energy, 2018,46:193.
[84]
Shui J L, Du F, Xue C M, Li Q, Dai L M . ACS Nano, 2014,8:015.
[85]
Yang X Y, Xu J J, Chang Z W, Bao D, Yin Y B, Liu T, Yan J M, Liu D P, Zhang Y, Zhang X B . Adv. Energy Mater., 2018,12:1702242.
[86]
Liu J L, Zhu D D, Zheng Y, Vasileff A, Qiao S Z . ACS Catal., 2018,8:6707.
[87]
Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei P, Hu X, Mukherjee A, Lau K C, Assary R S, Khalili-Araghi F, Klie R F, Curtiss L A, Salehi-Khojin A . Nature, 2018,555:502.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[8] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[9] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[10] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[13] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[14] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[15] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.