中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 909-925 DOI: 10.7536/PC210635 Previous Articles   Next Articles

• Review •

Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes

Xumin Wang1,2, Shuping Li1, Renjie He1,2, Chuang Yu1, Jia Xie1(), Shijie Cheng1   

  1. 1 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430000, China
    2 School of Materials Science and Engineering, Huazhong University of Science and Technology,Wuhan 430000, China
  • Received: Revised: Online: Published:
  • Contact: Jia Xie
  • Supported by:
    National Natural Science Foundation of China(21975087); China Postdoctoral General Foundation(2020M672337)
Richhtml ( 22 ) PDF ( 448 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of electric vehicles and portable electronic products, the demand for high-energy-density battery systems is becoming more and more urgent. However, the energy density of traditional lithium-ion battery cathode materials is approaching the theoretical limit, thus it is urgent to develop the next-generation battery system with higher energy density. Sulfur cathodes possess lots of advantages, such as high energy density, natural abundance, and low cost, achieving extensive research attention. For the conventional dissolution-deposition mechanism, sulfur cathodes suffer from “shuttle effect”, resulting in irreversible loss of active material, low coulomb efficiency, and poor cycle life. To alleviate the “shuttle effect”, a series of strategies are usually adopted, for instance, physical confinement, chemical adsorption, and reaction accelerators, but none of them can fundamentally solve these problems. Recently, the quasi-solid-state conversion reaction of sulfur cathodes has attracted wide attention. This review discusses these approaches for constructing quasi-solid-state conversion reaction of sulfur cathodes, including the designs of microporous carbon structure, the formation of a solid electrolyte interface (SEI) on the sulfur surface, and electrolyte engineering. The research significance is highlighted and electrochemical behaviors of the quasi-solid-state conversion reaction of sulfur cathodes are summarized. Enhancing the reactivity of sulfur cathode is an effective strategy to alleviate the intrinsic sluggish kinetics of sulfur cathodes. These strategies for quasi-solid-state conversion mechanism of sulfur cathodes are beneficial to cyclability, enabling the practical development of high-performance Li-S batteries.

Contents

1 Introduction

2 Microporous carbon structure

2.1 Electrochemical reaction characteristics

2.2 Building strategy

3 Solid electrolyte interface on the sulfur cathode

3.1 In-situ SEI

3.2 Ex-situ SEI

4 Electrolyte engineering

4.1 Concentrated electrolyte

4.2 Diluted concentrated electrolyte

5 Conclusion and outlook

Fig. 1 The development time axis diagram of sulfur cathode (The blue part is sulfur cathode of the quasi-solid-state conversion reaction, and orange one is sulfur cathode of the dissolution-deposition mechanism)
Fig. 2 (a) Schematic illustration of traditional dissolution-deposition mechanism[10]; (b) Schematic illustration of quasi-solid-state conversion reaction[10]
Fig. 3 (a) Discharge and charge mechanism of C-S-3 hybrid cathode[51]; (b) Cycling performance of C-S hybrids at 335 mA·g-1[51]; (c) Cycling stability of S/FMNCN-900 cathode at 2 C and the schematic for preparation of S/FMNCN composites[52]
Fig. 4 (a) Schematic illustration of the preparation of S/UMC by one-step pyrolysis treatment of PVDF powder[57]; (b) Cycle performances of the S/UMC composite electrodes at 0.1 C[57]; (c) The preparation process of c-MNS/S composites by the calcination of macadamia nut shell[59]; (d) Cycling performances of c-MNS/S at 0.1 C[59]
Fig. 5 (a) Schematic illustration of the structural evolution of the S2-4 molecules during charging/discharging processes[62]; (b) The cycle performance of FDU/S-60 and FDU/S-40 electrode at 400 mA·g-1 with the carbonate-based electrolyte[62]; (c) Schematic illustration of the Carbon aerogels synthesis through gas-infiltration method[65]; (d) Cycling performance of the carbon aerogels at 0.3 C in the carbonate electrolyte[65]
Fig. 6 (a) Schematic illustration of the dissolution-deposition mechanism and the quasi-solid-state conversion reaction mechanism of S-C electrodes[75]; (b) Schematic illustration of the in-situ formation of an SEI film on the sulfur surfaces in the carbonate/ether co-solvent electrolyte[26]; (c) Cycle performance of the S/C cathode at 100 mA·g-1[26]
Fig. 7 (a) Schematic illustration of the SEI formation by reduction of FEC and the cycling performance at the C/5 rate[79]; (b) Schematic illustration of the in-situ SEI in the high-concentration dual-salt electrolyte and the electrochemical performances[80]
Fig. 8 (a) Schematic illustration for different lithiation mechanism of Se-S cathodes in HFE-based and DME-based electrolytes[83]; (b) Cycling performance of S5Se2/KB cathode in the three electrolytes[83]; (c) The rate performance comparison of CMK-3/S-Te-1 and CMK-3/S cathodes[84]; (d) The cycle performance comparison of CMK-3/S-Te-1 and CMK-3/S cathodes at 0.1 C[84]; (e) Schematic illustration of the S@PAN/S7Se cathode before and after electrochemical cycling[85]; (f) Cycling performance of S@PAN/S7Se electrodes with high loadings of 5 mg·cm-2 at 0.2 A·g-1[85]
Fig. 9 (a) Schematic of alucone coating on C-S electrode via molecular layer deposition[86]; (b) The electrochemical performances of alucone coated C-S electrodes under 55 ℃[86]; (c) Long cycling of alucone-coated C-S electrodes with various loadings[87]; (d) The SEM images of alumina-containing and uncoated electrodes and the electrochemical performances at 0.2 C[88]
Fig. 10 (a) Schematic illustration for the proposed mechanism of PVDF- and PEO-coated C/S cathodes[89]; (b) The electrochemical performances of PVDF-coated cathodes[89]
Fig. 11 (a) Concept of sulfur cathode reaction mechanism in high concentration electrolyte[25]; (b) GITT curveofsulfurcathode experiments in ACN:HFE (1:1)[25]; (c) Structure illustration of the G2:LiTFSI (0.8:1) electrolytes[97]; (d) The equilibrium voltage curves of sulfur cathodes in different G2:LiTFSI electrolytes[97]; (e) Schematic illustration of sulfur cathode in concentrated siloxane electrolytes[93]; (f) First charge/discharge curve ofsulfurcathode in the concentrated siloxane electrolytes[93]
Fig. 12 (a) The solvation structure for the pseudo-concentrated electrolyte[101]; (b) Cycling performance of sulfur cathode at 0.2C in different electrolytes[101]; (c) Schematic illustration of polysulfide state in dilute electrolyte[102]; (d) Charge/discharge curves of sulfur cathode in the 1 M LiFSI/HFE+DME electrolyte[102]; (e) GITT curve of sulfur cathode in 1 M LiFSI/OFE + DME5 electrolyte[103]; (f) GITT curves of sulfur cathode in 1 M LiFSI/OFE + DME50 electrolyte[103]
Fig. 13 Potential pathways of a quasi-solid-state conversion reaction sulfur cathode[25,51,87]
[1]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48): 1606823.

doi: 10.1002/adma.201606823
[2]
Dirlam P T, Glass R S, Char K, Pyun J. J. Polym. Sci. A: Polym. Chem., 2017, 55(10): 1635.

doi: 10.1002/pola.28551
[3]
Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28(43): 9550.

doi: 10.1002/adma.201670303
[4]
Grey C P, Tarascon J M. Nat. Mater., 2017, 16(1): 45.

doi: 10.1038/nmat4777
[5]
Peng H J, Huang J Q, Cheng X B, Zhang Q. Adv. Energy Mater., 2017, 7(24): 1700260.

doi: 10.1002/aenm.201700260
[6]
Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 2016, 1(9): 16132.

doi: 10.1038/nenergy.2016.132
[7]
Li Z, Wu H B, (David) Lou X W. Energy Environ. Sci., 2016, 9(10): 3061.

doi: 10.1039/C6EE02364A
[8]
Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Nat. Commun., 2016, 7(1): 10601.

doi: 10.1038/ncomms10601
[9]
Meng T, Gao J C, Zhu J H, Li N, Xu M W, Li C M, Jiang J. J. Mater. Chem. A, 2020, 8(24): 11976.

doi: 10.1039/D0TA04592F
[10]
Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Adv. Energy Mater., 2015, 5(16): 1500212.

doi: 10.1002/aenm.201500212
[11]
Yao N P, Heredy L A, Saunders R C. J. Electrochem. Soc., 1970, 117: 148.
[12]
Rosenman A, Elazari R, Salitra G, Markevich E, Aurbach D, Garsuch A. J. Electrochem. Soc., 2015, 162(3): A470.

doi: 10.1149/2.0861503jes
[13]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460
[14]
Ding N, Lum Y, Chen S F, Chien S W, Hor T S A, Liu Z L, Zong Y. J. Mater. Chem. A, 2015, 3(5): 1853.

doi: 10.1039/C4TA05659K
[15]
Wei Seh Z, Li W Y, Cha J J, Zheng G Y, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat. Commun., 2013, 4(1): 1331.

doi: 10.1038/ncomms2327
[16]
Yao Y, Feng W L, Chen M L, Zhong X W, Wu X J, Zhang H B, Yu Y. Small, 2018, 14(42): 1802516.

doi: 10.1002/smll.201802516
[17]
Ai W, Zhou W W, Du Z Z, Chen Y, Sun Z P, Wu C, Zou C J, Li C M, Huang W, Yu T. Energy Storage Mater., 2017, 6: 112.
[18]
Pu J, Shen Z H, Zheng J X, Wu W L, Zhu C, Zhou Q W, Zhang H G, Pan F. Nano Energy, 2017, 37: 7.

doi: 10.1016/j.nanoen.2017.05.009
[19]
Li Z, Zhang J T, Guan B Y, Wang D, Liu L M, Lou X W. Nat. Commun., 2016, 7(1): 13065.

doi: 10.1038/ncomms13065
[20]
Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13): 3907.

doi: 10.1002/anie.201410174 pmid: 25650042
[21]
Pang Q, Kundu D P, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5(1): 4759.

doi: 10.1038/ncomms5759
[22]
Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G W, Lee J Y. Energy Environ. Sci., 2017, 10(6): 1476.

doi: 10.1039/C7EE01047H
[23]
Li Y J, Fan J M, Zheng M S, Dong Q F. Energy Environ. Sci., 2016, 9(6): 1998.

doi: 10.1039/C6EE00104A
[24]
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(45): 18510.

doi: 10.1021/ja308170k
[25]
Cuisinier M, Cabelguen P E, Adams B D, Garsuch A, Balasubramanian M, Nazar L F. Energy Environ. Sci., 2014, 7(8): 2697.

doi: 10.1039/C4EE00372A
[26]
He F, Wu X J, Qian J F, Cao Y L, Yang H X, Ai X P, Xia D G. J. Mater. Chem. A, 2018, 6(46): 23396.

doi: 10.1039/C8TA08159J
[27]
Deng N P, Ma X M, Ruan Y L, Wang X Q, Kang W M, Cheng B W. Progress in Chemistry, 2016, 28(9): 1435.
(邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 化学进展, 2016, 28(9): 1435.).

doi: 10.7536/PC160203
[28]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.

doi: 10.1021/cr500062v pmid: 25026475
[29]
Chen X, Peng L F, Wang L H, Yang J Q, Hao Z X, Xiang J W, Yuan K, Huang Y H, Shan B, Yuan L X, Xie J. Nat. Commun., 2019, 10(1): 1021.

doi: 10.1038/s41467-019-08818-6 pmid: 30833552
[30]
Dai C L, Lim J M, Wang M Q, Hu L Y, Chen Y M, Chen Z Y, Chen H, Bao S J, Shen B L, Li Y, Henkelman G, Xu M W. Adv. Funct. Mater., 2018, 28(14): 1704443.

doi: 10.1002/adfm.201704443
[31]
Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W, Dong Q F. Chem, 2020, 6(10): 2533.

doi: 10.1016/j.chempr.2020.06.032
[32]
Liu Y T, Liu S, Li G R, Gao X P. Adv. Mater., 2021, 33(8): 2003955.

doi: 10.1002/adma.202003955
[33]
Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. ACS Cent. Sci., 2020, 6(7): 1095.

doi: 10.1021/acscentsci.0c00449
[34]
Wang D W, Zhou G M, Li F, Wu K H, Lu G Q M, Cheng H M, Gentle I R. Phys. Chem. Chem. Phys., 2012, 14(24): 8703.

doi: 10.1039/c2cp40808b
[35]
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33): 9382.

doi: 10.1039/c3ta11045a
[36]
Lin Y X, Zheng J, Wang C S, Qi Y. Nano Energy, 2020, 75: 104915.

doi: 10.1016/j.nanoen.2020.104915
[37]
Ma L, Hendrickson K E, Wei S Y, Archer L A. Nano Today, 2015, 10(3): 315.

doi: 10.1016/j.nantod.2015.04.011
[38]
Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Adv. Funct. Mater., 2018, 28(38): 1800919.

doi: 10.1002/adfm.201800919
[39]
Lin Y L, Huang S, Zhong L, Wang S J, Han D M, Ren S, Xiao M, Meng Y Z. Energy Storage Mater., 2021, 34: 128.
[40]
Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci., 2010, 3(10): 1531.

doi: 10.1039/c002639e
[41]
Maria Joseph H, Fichtner M, Munnangi A R. J. Energy Chem., 2021, 59: 242.

doi: 10.1016/j.jechem.2020.11.001
[42]
Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, FÉrey G, Tarascon J M. J. Am. Chem. Soc., 2011, 133(40): 16154.

doi: 10.1021/ja2062659 pmid: 21882857
[43]
Hao G P, Tang C, Zhang E, Zhai P Y, Yin J, Zhu W C, Zhang Q, Kaskel S. Adv. Mater., 2017, 29(37): 1702829.

doi: 10.1002/adma.201702829
[44]
Sun Z J, Wang S J, Yan L L, Xiao M, Han D M, Meng Y Z. J. Power Sources, 2016, 324: 547.

doi: 10.1016/j.jpowsour.2016.05.122
[45]
Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10): 4462.

doi: 10.1021/nl2027684
[46]
Hua Y, Li X L, Zhang X C, Zhang L Y, Shu Y Z, Sheng H J, Fang H G, Wei H B, Ding Y S. ChemElectroChem, 2019, 6(9): 2570.

doi: 10.1002/celc.201900556
[47]
Sun J K, Xu Q. Energy Environ. Sci., 2014, 7(7): 2071.

doi: 10.1039/c4ee00517a
[48]
Morozan A, Jaouen F. Energy Environ. Sci., 2012, 5(11): 9269.

doi: 10.1039/c2ee22989g
[49]
Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16): 5468.

doi: 10.1039/C3CS60472A
[50]
Wang D Y, Liu R L, Guo W, Li G, Fu Y Z. Coord. Chem. Rev., 2021, 429: 213650.

doi: 10.1016/j.ccr.2020.213650
[51]
Li Z Q, Yin L W. ACS Appl. Mater. Interfaces, 2015, 7(7): 4029.

doi: 10.1021/am507660y
[52]
Hong X J, Tang X Y, Wei Q, Song C L, Wang S Y, Dong R F, Cai Y P, Si L P. ACS Appl. Mater. Interfaces, 2018, 10(11): 9435.

doi: 10.1021/acsami.7b19609
[53]
Yan D, Teng B. Chem. Res. Chin. Univ., 2019, 35(4): 654.

doi: 10.1007/s40242-019-9038-0
[54]
Li G C, Jiang X L, Liu C, Song M C, Yang S L, Lian J B, Lee J Y. Int. J. Energy Res., 2020, 44(3): 2126.

doi: 10.1002/er.5070
[55]
Tong Z M, Huang L, Lei W, Zhang H J, Zhang S W. J. Energy Chem., 2021, 54: 254.

doi: 10.1016/j.jechem.2020.05.059
[56]
Hu L, Lu Y, Zhang T W, Huang T, Zhu Y C, Qian Y T. ACS Appl. Mater. Interfaces, 2017, 9(16): 13813.

doi: 10.1021/acsami.7b01387
[57]
Zhu Q Z, Zhao Q, An Y B, Anasori B, Wang H R, Xu B. Nano Energy, 2017, 33: 402.

doi: 10.1016/j.nanoen.2017.01.060
[58]
Zhao Q, Zhu Q Z, Miao J W, Guan Z, Liu H, Chen R J, An Y B, Wu F, Xu B. ACS Appl. Mater. Interfaces, 2018, 10(13): 10882.

doi: 10.1021/acsami.8b00225
[59]
Han J K, Li Y, Li S W, Long P, Cao C, Cao Y, Wang W Z, Feng Y Y, Feng W. Sustain. Energy Fuels, 2018, 2(10): 2187.

doi: 10.1039/C8SE00185E
[60]
Hu L, Lu Y, Li X N, Liang J W, Huang T, Zhu Y C, Qian Y T. Small, 2017, 13(11): 1603533.

doi: 10.1002/smll.201603533
[61]
Sun D, Razaq R, Xin Y, Zhang J H, Li Q, Huang T Z, Zhang Z L. Mater. Res. Express, 2019, 6(8): 085509.

doi: 10.1088/2053-1591/ab1bf9
[62]
Li Z, Yuan L X, Yi Z Q, Sun Y M, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z L, Huang Y H. Adv. Energy Mater., 2014, 4(7): 1301473.

doi: 10.1002/aenm.201301473
[63]
Liu X D, Rahmatinejad J, Ye Z B. Chem. Eng. J., 2021, 422: 130129.

doi: 10.1016/j.cej.2021.130129
[64]
Allahbakhsh A, Bahramian A R. Nanoscale, 2015, 7(34): 14139.

doi: 10.1039/c5nr03855c pmid: 26245296
[65]
Nojabaee M, Sievert B, Schwan M, Schettler J, Warth F, Wagner N, Milow B, Friedrich K A. J. Mater. Chem. A, 2021, 9(10): 6508.

doi: 10.1039/D0TA11332H
[66]
Li Z H, Li X G, Liao Y H, Li X P, Li W S. J. Power Sources, 2016, 334: 23.

doi: 10.1016/j.jpowsour.2016.10.003
[67]
Fan C J, Yan Y L, Chen L P, Chen S Y, Lin J M, Yang R. Progress in Chemistry, 2019, 31(8): 1166.
(樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 化学进展, 2019, 31(8): 1166.).

doi: 10.7536/PC190140
[68]
Aurbach D, Markovsky B, Levi M D, Levi E, Schechter A, Moshkovich M, Cohen Y. J. Power Sources, 1999, 81-82: 95.
[69]
Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ion., 2002, 148(3/4): 405.

doi: 10.1016/S0167-2738(02)00080-2
[70]
Verma P, Maire P, Novák P. Electrochim. Acta, 2010, 55(22): 6332.

doi: 10.1016/j.electacta.2010.05.072
[71]
Sun S, Liu B, Zhang H S, Guo Q B, Xia Q Y, Zhai T, Xia H. Adv. Energy Mater., 2021, 11(8): 2003599.

doi: 10.1002/aenm.202003599
[72]
Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Adv. Energy Mater., 2021, 11(2): 2000791.

doi: 10.1002/aenm.202000791
[73]
Kozen A C, Lin C F, Zhao O, Lee S B, Rubloff G W, Noked M. Chem. Mater., 2017, 29(15): 6298.

doi: 10.1021/acs.chemmater.7b01496
[74]
Guo D, Li X, Wahyudi W, Li C Y, Emwas A H, Hedhili M N, Li Y X, Lai Z P. ACS Nano, 2020, 14(12): 17163.

doi: 10.1021/acsnano.0c06944
[75]
Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. J. Electrochem. Soc., 2016, 164(1): A6244.

doi: 10.1149/2.0391701jes
[76]
Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. J. Mater. Chem. A, 2015, 3(39): 19873.

doi: 10.1039/C5TA04613K
[77]
Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. Electrochem. Commun., 2015, 60: 42.

doi: 10.1016/j.elecom.2015.08.004
[78]
Rosenman A, Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. J. Electrochem. Soc., 2016, 163(9): A1829.

doi: 10.1149/2.0151609jes
[79]
Lee J T, Eom K, Wu F X, Kim H, Lee D C, Zdyrko B, Yushin G. ACS Energy Lett., 2016, 1(2): 373.

doi: 10.1021/acsenergylett.6b00163
[80]
Chen X, Yuan L X, Li Z, Chen S J, Ji H J, Qin Y F, Wu L S, Shen Y, Wang L B, Hu J P, Huang Y H. ACS Appl. Mater. Interfaces, 2019, 11(33): 29830.

doi: 10.1021/acsami.9b07787
[81]
Wang K, Guan Y P, Jin Z Q, Wang W K, Wang A B. J. Energy Chem., 2019, 39: 249.

doi: 10.1016/j.jechem.2019.03.010
[82]
Li S P, Zhang W, Zeng Z Q, Cheng S J, Xie J. Electrochem. Energy Rev., 2020, 3(3): 613.

doi: 10.1007/s41918-020-00072-5
[83]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235
[84]
Li S P, Ma J Q, Zeng Z Q, Hu W, Zhang W, Cheng S J, Xie J. J. Mater. Chem. A, 2020, 8(6): 3405.

doi: 10.1039/C9TA13191D
[85]
He B, Rao Z X, Cheng Z X, Liu D D, He D Q, Chen J, Miao Z Y, Yuan L X, Li Z, Huang Y H. Adv. Energy Mater., 2021, 11(14): 2003690.

doi: 10.1002/aenm.202003690
[86]
Li X, Lushington A, Sun Q, Xiao W, Liu J, Wang B Q, Ye Y F, Nie K Q, Hu Y F, Xiao Q F, Li R Y, Guo J H, Sham T K, Sun X L. Nano Lett., 2016, 16(6): 3545.

doi: 10.1021/acs.nanolett.6b00577 pmid: 27175936
[87]
Li X, Banis M, Lushington A, Yang X F, Sun Q, Zhao Y, Liu C Q, Li Q Z, Wang B Q, Xiao W, Wang C H, Li M S, Liang J W, Li R Y, Hu Y F, Goncharova L, Zhang H M, Sham T K, Sun X L. Nat. Commun., 2018, 9(1): 4509.

doi: 10.1038/s41467-018-06877-9 pmid: 30375387
[88]
Azaceta E, García S, Leonet O, Beltrán M, GÓmez I, Chuvilin A, Mainar A R, Blazquez J A, Knez M. Mater. Today Energy, 2020, 18: 100567.
[89]
Fang R Y, Xu H H, Xu B Y, Li X Y, Li Y T, Goodenough J B. Adv. Funct. Mater., 2021, 31(2): 2001812.

doi: 10.1002/adfm.202001812
[90]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z
[91]
Liu K X, Wang Z Y, Shi L Y, Jungsuttiwong S, Yuan S. J. Energy Chem., 2021, 59: 320.

doi: 10.1016/j.jechem.2020.11.017
[92]
Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. J. Electrochem. Soc., 2013, 160(8): A1304.

doi: 10.1149/2.111308jes
[93]
Amine R, Liu J Z, Acznik I, Sheng T, Lota K, Sun H, Sun C J, Fic K, Zuo X B, Ren Y, Ei-Hady D A, Alshitari W, Al-Bogami A S, Chen Z H, Amine K, Xu G L. Adv. Energy Mater., 2020, 10(25): 2000901.

doi: 10.1002/aenm.202000901
[94]
Kong L, Yin L H, Xu F, Bian J C, Yuan H M, Lu Z G, Zhao Y S. J. Energy Chem., 2021, 55: 80.

doi: 10.1016/j.jechem.2020.06.054
[95]
Su C C, He M N, Amine R, Chen Z H, Amine K. Angew. Chem. Int. Ed., 2018, 57(37): 12033.

doi: 10.1002/anie.201807367
[96]
Suo L M, Hu Y S, Li H, Armand M, Chen L Q. Nat. Commun., 2013, 4(1): 1481.

doi: 10.1038/ncomms2513
[97]
Pang Q, Shyamsunder A, Narayanan B, Kwok C Y, Curtiss L A, Nazar L F. Nat. Energy, 2018, 3(9): 783.

doi: 10.1038/s41560-018-0214-0
[98]
Zhang Y Z, Liu S, Li G C, Li G R, Gao X P. J. Mater. Chem. A, 2014, 2(13): 4652.

doi: 10.1039/C3TA14914E
[99]
Fan L L, Deng N P, Yan J, Li Z H, Kang W M, Cheng B W. Chem. Eng. J., 2019, 369: 874.

doi: 10.1016/j.cej.2019.03.145
[100]
Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. Adv. Mater., 2018, 30(21): 1870144.

doi: 10.1002/adma.201870144
[101]
Huang F F, Ma G Q, Wen Z Y, Jin J, Xu S Q, Zhang J J. J. Mater. Chem. A, 2018, 6(4): 1612.

doi: 10.1039/C7TA08274F
[102]
Zheng J, Fan X L, Ji G B, Wang H Y, Hou S, DeMella K C, Raghavan S R, Wang J, Xu K, Wang C S. Nano Energy, 2018, 50: 431.

doi: 10.1016/j.nanoen.2018.05.065
[103]
Zheng J, Ji G B, Fan X L, Chen J, Li Q, Wang H Y, Yang Y, DeMella K C, Raghavan S R, Wang C S. Adv. Energy Mater., 2019, 9(16): 1803774.

doi: 10.1002/aenm.201803774
[104]
Huang F F, Gao L J, Zou Y P, Ma G Q, Zhang J J, Xu S Q, Li Z X, Liang X. J. Mater. Chem. A, 2019, 7(20): 12498.

doi: 10.1039/C9TA02877C
[105]
Xin S, Yin Y X, Guo Y G, Wan L J. Adv. Mater., 2014, 26(8): 1261.

doi: 10.1002/adma.201304126
[106]
Wei S Y, Xu S M, Agrawral A, Choudhury S, Lu Y Y, Tu Z Y, Ma L, Archer L A. Nat. Commun., 2016, 7(1): 11722.

doi: 10.1038/ncomms11722
[107]
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Angew. Chem. Int. Ed., 2020, 59(31): 12636.

doi: 10.1002/anie.201909339
[1] Liang Xiao, Wen Zhaoyin, Liu Yu. New Development of Key Materials for High-Performance Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 520-526.