中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1378-1389 DOI: 10.7536/PC200734 Previous Articles   Next Articles

• Review •

Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery

Long Chen, Shaobo Huang, Jingyi Qiu(), Hao Zhang(), Gaoping Cao()   

  1. Research Institute of Chemical Defense, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Contact: Jingyi Qiu, Hao Zhang, Gaoping Cao
  • Supported by:
    National Natural Science Foundation of China(22075320); National Natural Science Foundation of China(21875284); China Postdoctoral Science Foundation(2020M683741)
Richhtml ( 53 ) PDF ( 1759 ) Cited
Export

EndNote

Ris

BibTeX

The energy density and safety of lithium secondary batteries are urgently required to be improved. Research on high-energy-density solid-state lithium batteries is of great significance to development of the new energy industries. Compared with the traditional organic electrolyte lithium-ion battery, the solid-state lithium battery with polymer solid electrolyte not only has significantly improved security, but also can match with high-capacity electrode materials to effectively improve the energy density. The polymer-based solid-state lithium battery is one of the most promising lithium secondary batteries. However, there are still some problems between polymer solid electrolyte and lithium anode, such as interface side reaction and lithium dendrites. In recent years, various methods have been used to improve the performance of solid-state lithium battery, including electrolyte composition regulation, electrolyte mechanical properties improvement, electrolyte/lithium anode interface regulation and matching three-dimensional lithium anode. Here, the common polymer solid electrolyte and its interface challenges with lithium anode are firstly introduced. Simultaneously, the recent research progress on improving the interface stability of polymer electrolyte/lithium anode is summarized and discussed in detail, including: adding inorganic fillers, using high-strength substrate film, building hierarchical layered structure, constructing interfacial buffer layer, designing and developing electrolyte with cross-linking network structure and fabricating protected solid-state lithium anode. Finally, the research and development trend of polymer solid electrolyte/lithium anode interface compatibility are prospected.

Contents

1 Introduction

2 Polymer solid electrolytes

3 The challenges in polymer electrolyte/lithium anode interface

4 Modification strategy of polymer electrolyte/lithium anode interface

4. 1 Inorganic fillers

4. 2 High strength substrate membranes

4. 3 Design of hierarchical layered structure

4. 4 Interfacial buffer layer

4. 5 Design of structural cross-link network

4. 6 Li-protection strategy in solid-state battery

5 Conclusions and outlook

Fig.1 Schematic diagram of interface failure between polymer electrolyte and lithium anode[9]
Fig. 2 (a) Schematic illustration for PEO-LLZTO composite electrolyte;(b) galvanostatic cycling curves of the lithium symmetrical cell at a current density of 0.5 mA·cm-2 at 55 ℃;(c) safety illustration of flexible pouch lithium metal cell[68]
Fig. 3 Schematic of the electrochemical deposition behavior of the lithium metal anode with(a) the PLL solid electrolyte with immobilized anions and(b) the routine liquid electrolyte with mobile anions[69]
Fig. 4 PEO based composite solid electrolyte enhanced with inorganic nano fiber,(a) schematic of LLZO nano fiber membrane;(b) cycling performance of symmetrical Li-Li cells with PEO-LLZO electrolyte[71];(c) the preparation process of PEO based composite electrolyte enhanced with LLTO nano fiber membrane, the cycling performance of symmetrical Li-Li cells with PEO-LLTO electrolyte[74];(d) schematic of PAN-LATP nano fiber, the corresponding composite electrolyte and solid-state lithium battery[76]
Fig. 5 (a) Schematic illustration of the polymer-in-ceramic electrolyte(5 μm LLZTO), ceramic-in-polymer electrolyte(200 nm LLZTO), and hierarchical sandwich-type composite electrolytes[85];(b) Stacking model of double-layer polymer electrolyte in an all-solid-state battery[55];Schematic illustrations for superiorities of(c) modified solid electrolyte and(d) interfacial regulation of hierarchical composite solid electrolyte[86]
Fig. 6 Schematic illustration of the successive deposition of the PEO-LiTFSI electrolyte(solvent casting) and Al2O3 layer(Atomic layer deposition);(b) high-resolution O 1s XPS spectra of PEO-LiTFSI and PEO-LiTFSI-Al2O3 electrolytes;(c) potential profiles of the symmetric cell using PEO-LiTFSI-Al2O3 at different current densities[87]
Fig. 7 Illustration of the in-situ preparation of the bifunctional cross-linking electrolyte;(b) Proposed electrochemical deposition behavior of Li metal with bifunctional electrolyte;(c) Young’s modulus mapping, and(d) illustration of the proposed Li deposition behavior using liquid and bifunctional electrolyte[94]
Fig. 8 (a) The preparation schematic of PTFE-LLZTO-SN electrolyte;(b) schematic of the interface on the PTFE-LLZTO-SN electrolytes respect to Li and Li-FEC anode;(c) Electrochemical impedance spectra at different storage time and (d) galvanostatic cycling curves of the symmetric Li and Li-FEC batteries at 25 ℃[100]
Fig. 9 (a) Schematic illustration of the synthetic procedure of the VGCM;(b) lithium deposition diagram in confined nanospace;(c) galvanostatic discharge/charge profile of solid-state batteries with Li or VGCM@Li anode at 0.5 C(10 cycles);(d) galvanostatic discharge/charge profile of LiNi0.5Co0.2Mn0.3O2|VGCM@Li battery at different cycles[105]
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644
[2]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 1.
[3]
Wan J, Xie J, Mackanic D G, Burke W, Bao Z, Cui Y. Mater. Today Nano, 2018, 4: 1.
[4]
Liang J N, Luo J, Sun Q, Yang X F, Li R Y, Sun X L. Energy Storage Mater., 2019, 21: 308.
[5]
Judez X, Eshetu G G, Li C M, Rodriguez-Martinez L M, Zhang H, Armand M. Joule, 2018, 2(11): 2208.

doi: 10.1016/j.joule.2018.09.008
[6]
Sun C W, Liu J, Gong Y D, Wilkinson D P, Zhang J J. Nano Energy, 2017, 33: 363.

doi: 10.1016/j.nanoen.2017.01.028
[7]
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G. Nat. Energy, 2019, 4(3): 180.

doi: 10.1038/s41560-019-0338-x
[8]
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Energy Environ. Sci., 2014, 7(2): 513.

doi: 10.1039/C3EE40795K
[9]
Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chem, 2019, 5(1): 74.

doi: 10.1016/j.chempr.2018.12.002
[10]
Zhang X, Wang S, Xue C J, Xin C Z, Lin Y H, Shen Y, Li L L, Nan C W. Adv. Mater., 2019, 31(11): 1806082.
[11]
Khurana R, Schaefer J L, Archer L A, Coates G W. J. Am. Chem. Soc., 2014, 136(20): 7395.

doi: 10.1021/ja502133j pmid: 24754503
[12]
Cui X M, Chu Y, Qin L M, Pan Q M. ACS Sustainable Chem. Eng., 2018, 6(8): 11097.
[13]
Chen L, Li W X, Fan L Z, Nan C W, Zhang Q. Adv. Funct. Mater., 2019, 29(28): 1901047.
[14]
Lopez J, Mackanic D G, Cui Y, Bao Z N. Nat. Rev. Mater., 2019, 4(5): 312.

doi: 10.1038/s41578-019-0103-6
[15]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.
[16]
Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. Mater. Chem. Phys., 2005, 89(2/3): 390.

doi: 10.1016/j.matchemphys.2004.09.032
[17]
Fan L Z, Dang Z M, Nan C W, Li M. Electrochimica Acta, 2002, 48(2): 205.

doi: 10.1016/S0013-4686(02)00603-5
[18]
Li J, Lin Y, Yao H H, Yuan C F, Liu J. ChemSusChem, 2014, 7(7): 1901.

doi: 10.1002/cssc.v7.7
[19]
Wei Z Y, Chen S J, Wang J Y, Wang Z H, Zhang Z H, Yao X Y, Deng Y H, Xu X X. J. Mater. Chem. A, 2018, 6(27): 13438.
[20]
Porcarelli L, Gerbaldi C, Bella F, Nair J R. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[21]
Pan Q W, Barbash D, Smith D M, Qi H, Gleeson S E, Li C Y. Adv. Energy Mater., 2017, 7(22): 1701231.
[22]
Li Z Y, Li A J, Zhang H R, Lin R Q, Jin T W, Cheng Q, Xiao X H, Lee W K, Ge M Y, Zhang H J, Zangiabadi A, Waluyo I, Hunt A, Zhai H W, Borovilas J J, Wang P Y, Yang X Q, Chuan X Y, Yang Y. Nano Energy, 2020, 72: 104655.
[23]
Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Adv. Sci., 2019, 6(22): 1901036.
[24]
Yang Q, Huang J, Li Y J, Wang Y, Qiu J L, Zhang J N, Yu H G, Yu X Q, Li H, Chen L Q. J. Power Sources, 2018, 388: 65.

doi: 10.1016/j.jpowsour.2018.03.076
[25]
Nie K H, Wang X L, Qiu J L, Wang Y, Yang Q, Xu J J, Yu X Q, Li H, Huang X J, Chen L Q. ACS Energy Lett., 2020, 5(3): 826.

doi: 10.1021/acsenergylett.9b02739
[26]
Kimura K, Yajima M, Tominaga Y. Electrochem. Commun., 2016, 66: 46.

doi: 10.1016/j.elecom.2016.02.022
[27]
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Adv. Energy Mater., 2015, 5(24): 1501082.
[28]
Zhang X, Liu T, Zhang S F, Huang X, Xu B Q, Lin Y H, Xu B, Li L L, Nan C W, Shen Y. J. Am. Chem. Soc., 2017, 139(39): 13779.
[29]
Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y. Nat. Energy, 2017, 2(5): 1.

doi: 10.1038/ng0992-1
[30]
Zhang W Q, Nie J H, Li F, Wang Z L, Sun C W. Nano Energy, 2018, 45: 413.

doi: 10.1016/j.nanoen.2018.01.028
[31]
Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T. Solid State Ion., 2006, 177(26/32): 2679.

doi: 10.1016/j.ssi.2006.04.013
[32]
Zhang J J, Zang X, Wen H J, Dong T T, Chai J C, Li Y, Chen B B, Zhao J W, Dong S M, Ma J, Yue L P, Liu Z H, Guo X X, Cui G L, Chen L Q. J. Mater. Chem. A, 2017, 5(10): 4940.

doi: 10.1039/C6TA10066J
[33]
Cong L N, Li Y N, Lu W, Jie J, Liu Y L, Sun L Q, Xie H M. J. Power Sources, 2020, 446: 227365.
[34]
Wang C H, Sun Q, Liu Y L, Zhao Y, Li X, Lin X T, Banis M N, Li M S, Li W H, Adair K R, Wang D W, Liang J N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Nano Energy, 2018, 48: 35.

doi: 10.1016/j.nanoen.2018.03.020
[35]
Lu Q W, He Y B, Yu Q P, Li B H, Kaneti Y V, Yao Y W, Kang F Y, Yang Q H. Adv. Mater., 2017, 29(13): 1604460.
[36]
Zhang B C, Chen L, Hu J K, Liu Y C, Liu Y F, Feng Q, Zhu G N, Fan L Z. J. Power Sources, 2019, 442: 227230.
[37]
Chen B, Huang Z, Chen X T, Zhao Y R, Xu Q, Long P, Chen S J, Xu X X. Electrochimica Acta, 2016, 210: 905.

doi: 10.1016/j.electacta.2016.06.025
[38]
Wang Z Q, Tan R, Wang H B, Yang L Y, Hu J T, Chen H B, Pan F. Adv. Mater., 2018, 30(2): 1704436.
[39]
Chen N, Dai Y J, Xing Y, Wang L L, Guo C, Chen R J, Guo S J, Wu F. Energy Environ. Sci., 2017, 10(7): 1660.

doi: 10.1039/C7EE00988G
[40]
Zhou W D, Gao H C, Goodenough J B. Adv. Energy Mater., 2016, 6(1): 1501802.
[41]
Li X, Wang D H, Wang H C, Yan H F, Gong Z L, Yang Y. ACS Appl. Mater. Interfaces, 2019, 11(25): 22745.
[42]
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138(30): 9385.

doi: 10.1021/jacs.6b05341
[43]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16
[44]
Harry K J, Liao X X, Parkinson D Y, Minor A M, Balsara N P. J. Electrochem. Soc., 2015, 162(14): A2699.

doi: 10.1149/2.0321514jes
[45]
Brissot C, Rosso M, Chazalviel J N, Lascaud S. J. Power Sources, 1999,(81/82): 925.
[46]
Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M. Electrochem. Solid-State Lett., 2002, 5(12): A286.

doi: 10.1149/1.1519970
[47]
He Z J, Chen L, Zhang B C, Liu Y C, Fan L Z. J. Power Sources, 2018, 392: 232.

doi: 10.1016/j.jpowsour.2018.05.006
[48]
Chen L, Qiu X M, Bai Z M, Fan L Z. J. Energy Chem., 2021, 52: 210.

doi: 10.1016/j.jechem.2020.03.052
[49]
Granvalet-Mancini M L, Hanrath T, Teeters D. Solid State Ionics, 2000, 135: 283.

doi: 10.1016/S0167-2738(00)00448-3
[50]
Aurbach D, Daroux M L, Faguy P W, Yeager E. J. Electrochem. Soc., 1988, 135(8): 1863.

doi: 10.1149/1.2096170
[51]
Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Nat. Energy, 2016, 1(9): 1.

doi: 10.1038/ng0492-1
[52]
Yao P C, Zhu B, Zhai H W, Liao X B, Zhu Y X, Xu W H, Cheng Q, Jayyosi C, Li Z, Zhu J, Myers K M, Chen X, Yang Y. Nano Lett., 2018, 18(10): 6113.

doi: 10.1021/acs.nanolett.8b01421
[53]
Zhao Y, Yan J H, Cai W P, Lai Y M, Song J, Yu J Y, Ding B. Energy Storage Mater., 2019, 23: 306.
[54]
Ma Q, Zeng X X, Yue J P, Yin Y X, Zuo T T, Liang J Y, Deng Q, Wu X W, Guo Y G. Adv. Energy Mater., 2019, 9(13): 1803854.
[55]
Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Adv. Mater., 2019, 31(4): 1805574.
[56]
Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. J. Electrochem. Soc., 2019, 166(2): A416.

doi: 10.1149/2.1321902jes
[57]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy, 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002
[58]
Wan Z,. Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H, Kang F, He Y B. Adv. Funct. Mater., 2019, 29: 1805301.
[59]
Zhu Q Y, Wang X M, Miller J D. ACS Appl. Mater. Interfaces, 2019, 11(9): 8954.

doi: 10.1021/acsami.8b13735
[60]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C
[61]
Huang H J, Ding F, Zhong H, Li H, Zhang W G, Liu X J, Xu Q. J. Mater. Chem. A, 2018, 6(20): 9539.

doi: 10.1039/C8TA03061H
[62]
Tominaga Y, Yamazaki K. Chem. Commun., 2014, 50(34): 4448.

doi: 10.1039/C3CC49588D
[63]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9(26): 21773.
[64]
Yang L Y, Wang Z J, Feng Y C, Tan R, Zuo Y X, Gao R T, Zhao Y, Han L, Wang Z Q, Pan F. Adv. Energy Mater., 2017, 7(22): 1701437.
[65]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.
[66]
Wang X, Zhai H W, Qie B Y, Cheng Q, Li A J, Borovilas J, Xu B Q, Shi C M, Jin T W, Liao X B, Li Y B, He X D, Du S Y, Fu Y K, Dontigny M, Zaghib K, Yang Y. Nano Energy, 2019, 60: 205.

doi: 10.1016/j.nanoen.2019.03.051
[67]
Lin D C, Yuen P Y, Liu Y Y, Liu W, Liu N, Dauskardt R H, Cui Y. Adv. Mater., 2018, 30(32): 1802661.
[68]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy, 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037
[69]
Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. PNAS, 2017, 114(42): 11069.
[70]
Li Y, Zhang W, Dou Q Q, Wong K W, Ng K M. J. Mater. Chem. A, 2019, 7(7): 3391.

doi: 10.1039/C8TA11449H
[71]
Fu K K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman E D, Hu L. Proc. Natl. Acad. Sci. USA, 2016, 113: 7094.

doi: 10.1073/pnas.1600422113
[72]
Li B Y, Su Q M, Yu L T, Wang D, Ding S K, Zhang M, Du G H, Xu B S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42206.
[73]
Zhu P, Yan C Y, Dirican M, Zhu J D, Zang J, Selvan R K, Chung C C, Jia H, Li Y, Kiyak Y, Wu N Q, Zhang X W. J. Mater. Chem. A, 2018, 6(10): 4279.

doi: 10.1039/C7TA10517G
[74]
Wang X Z, Zhang Y B, Zhang X, Liu T, Lin Y H, Li L L, Shen Y, Nan C W. ACS Appl. Mater. Interfaces, 2018, 10(29): 24791.
[75]
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nat. Mater., 2019, 18(12): 1278.

doi: 10.1038/s41563-019-0431-3
[76]
Li D, Chen L, Wang T S, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10(8): 7069.

doi: 10.1021/acsami.7b18123
[77]
Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H. Angew. Chem. Int. Ed., 2018, 57(8): 2007.

doi: 10.1002/anie.v57.8
[78]
Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H. Energy Storage Mater., 2018, 15: 46.
[79]
Li Z, Sha W X, Guo X. ACS Appl. Mater. Interfaces, 2019, 11(30): 26920.
[80]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3
[81]
Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.
[82]
Chen L, Fan L Z. Energy Storage Mater., 2018, 15: 37.
[83]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[84]
Tao X Y, Liu Y Y, Liu W, Zhou G M, Zhao J, Lin D C, Zu C X, Sheng O W, Zhang W K, Lee H W, Cui Y. Nano Lett., 2017, 17(5): 2967.

doi: 10.1021/acs.nanolett.7b00221
[85]
Huo H Y, Chen Y, Luo J, Yang X F, Guo X X, Sun X L. Adv. Energy Mater., 2019, 9(17): 1804004.
[86]
Sun J Q, He C H, Yao X M, Song A Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. Adv. Funct. Mater., 2021, 31(1): 2006381.
[87]
Fan Z J, Ding B, Zhang T F, Lin Q Y, Malgras V, Wang J, Dou H, Zhang X G, Yamauchi Y. Small, 2019, 15(46): 1903952.
[88]
Guo H L, Sun H, Jiang Z L, Hu J Y, Luo C S, Gao M Y, Cheng J Y, Shi W K, Zhou H J, Sun S G. ACS Appl. Mater. Interfaces, 2019, 11(50): 46783.
[89]
Gai J L, Ma F R, Zhang Z Q, Sun D Y, Jin Y C, Guo Y J, Kim W. ACS Sustainable Chem. Eng., 2019, 7(19): 15896.
[90]
Duan H, Yin Y X, Shi Y, Wang P F, Zhang X D, Yang C P, Shi J L, Wen R, Guo Y G, Wan L J. J. Am. Chem. Soc., 2018, 140(1): 82.

doi: 10.1021/jacs.7b10864 pmid: 29232123
[91]
Chai J C, Chen B B, Xian F, Wang P, Du H P, Zhang J J, Liu Z H, Zhang H R, Dong S M, Zhou X H, Cui G L. Small, 2018, 14(37): 1802244.
[92]
Pan Q W, Smith D M, Qi H, Wang S J, Li C Y. Adv. Mater., 2015, 27(39): 5995.

doi: 10.1002/adma.201502059
[93]
Lin Z Y, Guo X W, Yu H J. Nano Energy, 2017, 41: 646.

doi: 10.1016/j.nanoen.2017.10.021
[94]
Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J. J. Am. Chem. Soc., 2016, 138(49): 15825.
[95]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater., 2018, 10: 85.
[96]
Chi S S, Liu Y C, Zhao N, Guo X X, Nan C W, Fan L Z. Energy Storage Mater., 2019, 17: 309.
[97]
Liu Y Y, Lin D C, Jin Y, Liu K, Tao X Y, Zhang Q H, Zhang X K, Cui Y. Sci. Adv., 2017, 3(10): eaao0713.

doi: 10.1126/sciadv.aao0713
[98]
Zhou F, Li Z, Lu Y Y, Shen B, Guan Y, Wang X X, Yin Y C, Zhu B S, Lu L L, Ni Y, Cui Y, Yao H B, Yu S H. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[99]
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Sci. Adv., 2018, 4(12): eaau9245.

doi: 10.1126/sciadv.aau9245
[100]
Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10(12): 2070052.
[101]
Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Adv. Funct. Mater., 2017, 27(24): 1700348.
[102]
Liu S F, Xia X H, Zhong Y, Deng S J, Yao Z J, Zhang L Y, Cheng X B, Wang X L, Zhang Q, Tu J P. Adv. Energy Mater., 2018, 8(8): 1702322.
[103]
Zhang H M, Liao X B, Guan Y P, Xiang Y, Li M, Zhang W F, Zhu X Y, Ming H, Lu L, Qiu J Y, Huang Y Q, Cao G P, Yang Y S, Mai L Q, Zhao Y, Zhang H. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[104]
Chi S S, Wang Q R, Han B, Luo C, Jiang Y D, Wang J, Wang C Y, Yu Y, Deng Y H. Nano Lett., 2020, 20(4): 2724.

doi: 10.1021/acs.nanolett.0c00352
[105]
Huang S B, Yang H, Hu J K, Liu Y C, Wang K X, Peng H L, Zhang H, Fan L Z. Small, 2019, 15(43): 1904216.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[5] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[6] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[7] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[8] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[9] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[10] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[11] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[12] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[13] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[14] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[15] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.