中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1417-1424 DOI: 10.7536/PC190315 Previous Articles   Next Articles

Materials System for Inkjet Printing High Performance Thin-Film Transistors

Qi Zhang, Huiqing Xiang, Jianguo Liu**(), Xiaoyan Zeng   

  1. Functional Laboratory of Laser and Terahertz Technology, Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received: Online: Published:
  • Contact: Jianguo Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51775209); Equipment Advance Research Project of China Electronics Technology Group Corporation(6141B08120301)
Richhtml ( 19 ) PDF ( 1180 ) Cited
Export

EndNote

Ris

BibTeX

Recently, thin-film transistor(TFT), as the primary building blocks of active electronics, has been intensively studied, and considerable progress on its high performance material development and multifunctional application have been made. As an emerging additive preparation technology, inkjet printing has received wide attention in such preparation field as electronic functional devices because of its low cost, environmental friendliness and masklessness. In this paper, the materials system for inkjet printing TFT is summarized. According to the corresponding classification and function, the three materials systems including semiconductor, insulator and electrode are introduced in detail, respectively. The effect of the three materials on the performance of TFT devices is also analyzed in depth. The materials system for inkjet printing TFT is prospected, and these provide the future materials selection direction for inkjet printing high-performance TFT.

Fig. 1 Schematic diagram of the structure of thin film transistor
Fig. 2 Molecular structures of common organic semiconductor materials
Fig. 3 (a) AFM image of spin-coated P3HT thin film and transfer characteristic of TFT;(b) AFM image of inkjet-printed P3HT thin film and transfer characteristic of TFT[21]
Fig. 4 UV-Vis-NIR spectra of sorted SWCNTs by different polymers including PFO-BT, PFIID, PCZ and PCZIID, 1.5 mg PFO-BT, 2.5 mg PFIID(Mw(l)), 3.5 mg PFIID(Mw(h)), 4.5 mg PCZ(Mw(l)), 5.5 mg PCZ(Mw(h)),6.5 mg PCZIIF,7.3 mg PCZIIF, 8.3 mg PCZ(Mw(h))[32]
Fig. 5 (a) SEM image of inkjet printed IGZO-TFT;(b) Transfer characteristics of IJP-IGZO TFTs with LSA and CTA treatments[49]
Fig. 6 (a) Printing the ZrO2 array on ITO glass;(b) 3D image of the single printed ZrO2 unit[61]
Fig. 7 (a) Optical microscopy images of CNT-TFTs fabricated from inkjet printed source/drain electrodes, AFM images of CNT network channels, deposition times (b) 13 h and (c) 18 h, respectively[77]
[1]
Zhou L, Wanga A, Wu S C, Sun J, Park S, Jackson T N . Appl. Phys. Lett., 2006,88(8):083502.
[2]
Mandal S, Noh Y Y . Semicond. Sci. Tech., 2015,30(6):064003.
[3]
Jeon P J, Lee K, Park E Y, Im S, Bae H . Org. Electron., 2016,32:208.
[4]
宋静怡(Song J Y), 江浪(Jiang L), 董焕丽(Dong H L), 胡文平(Hu W P) . 化学进展 (Progress in Chemistry), 2013,25(01):12.
[5]
Shen W . Sens. Actuators B, 2012,166:110.
[6]
Hennek J W, Xia Y, Everaerts K, Hersam M C, Facchetti A, Marks T J . ACS Appl. Mater. Inter., 2012,4(3):1614.
[7]
Wood V, Panzer M J, Chen J, Bradley M S, Halpert J E, Bawendi M G, Bulović V . Adv. Mater., 2009,21(21):2151.
[8]
Hoth C N, Schilinsky P, Choulis S A, Brabec C J . Nano Lett., 2008,8(9):2806.
[9]
Lavery L L, Whiting G L, Arias A C . Org. Electron., 2011,12(4):682.
[10]
Yang L, Rida A, Vyas R, Tentzeris M M . IEEE Trans. Microw. Theory Tech., 2007,55(12):2894.
[11]
Jiang C, Choi H W, Cheng X, Ma H, Hasko D, Nathan A . Science, 2019,363(6428):719.
[12]
Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, LEE S Y, Becerril HA, Aspuru-Guzik A S, Toney M F, Bao Z . Nature, 2011,480(7378):504.
[13]
Ge F, Wang X, Zhang Y, Song E, Zhang G B, Lu H B, Cho K, Qiu L Z , Adv. Electron. Mater., 2017,3(1):1600402.
[14]
Norita S, Kumaki D, Kobayashi Y, Sato T, Fukuda K, Tokito S . Org. Electron., 2015,25:131.
[15]
Haase K, Teixeira da Rocha C, Hauenstein C, Zheng Y, Hambsch M, Mannsfeld S C . Adv.Electron. Mater., 4(8):1800076.
[16]
Sakanoue T, Sirringhaus H . Nat. Mater., 2010,9(9):736.
[17]
Wang X, Qin M, Yuan M, Gu X, Qiu L, Zhang G, Hu J, Lu H, Lv G . J. Disp. Technol., 2015,11(5), 450.
[18]
Liu X, Kanehara M, Liu C, Minari T . J. Inf. Display., 2017,18(2):93.
[19]
Lim J A, Kim J H, Qiu L, Lee W H, Lee H S, Kwak D, Cho K . Adv. Funct. Mater., 2010,20(19):3292.
[20]
Lim J A, Lee W H, Lee H S, Lee J H, Park Y D, Cho K . Adv. Funct. Mater., 2008,18(2):229.
[21]
Lin Y, Liu C F, Song Y J, Yang L, Zeng W J, Lai W Y, Huang W . RSC Adv., 2016,6(47):40970.
[22]
Li D, Borkent E J, Nortrup R, Moon H, Katz H, Bao Z . Appl. Phys. Lett., 2005,86(4):042105.
[23]
Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Mäklin J, Tóth G, Kordás K, Jantunen H, Terrones M, Helistö P, Seppä H, Ajayan P M, Vajtai R . ACS Nano, 2010,4(6):3318.
[24]
Moore K E, Pfohl M, Tune D D, Hennrich F, Dehm S, ChakradhanulaV S K, Kübel C, Krupke R, Flavel B S . ACS Nano, 2015,9(4):3849.
[25]
Feng P, Xu W, Yang Y, Wan X, Shi Y, Wan Q. Zhao J W, Cui Z . Adv. Funct. Mater., 2017,27(5):1604447.
[26]
Sun D M, Liu C, Ren W C, Cheng H M . Small, 2013,9(8):1188.
[27]
Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W . Nano Lett., 2012,12(2):758.
[28]
Liu H, Tanaka T, Kataura H . Nano Lett., 2014,14(11):6237.
[29]
Arnold M S, Green A A, Hulvat J F, Stupp S I, Hersam M C . Nat. Nanotechnol., 2006,1(1):60.
[30]
Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A . J. Am. Chem. Soc., 2004,126(40):12736.
[31]
许威威(Xu W W), 徐文亚(Xu W Y), 张祥(Zhang X), 金晶(Jin J), 赵建文(Zhao J W), 崔铮(Cui Z) . 影像科学与光化学 (Photographic Science and Photochemistry), 2016,34(2):152.
[32]
刘停停(Liu T T), 朱天翔(Zhu T X), 邵琳(Shao L), 赵新洛(Zhao X L), 赵建文(Zhao J W), 崔铮(Cui Z) . 影像科学与光化学 (Photographic Science and Photochemistry), 2018,36(3):245.
[33]
Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S, Hannon J B, Haensch W . ACS Nano, 2014,8(9):8730.
[34]
Zaumseil J . Semicond. Sci. Tech., 2015,30(7):074001.
[35]
Biswas C, Lee Y H . Adv. Funct. Mater., 2011,21(20):3806.
[36]
Kim B, Jang S, Geier M L, Prabhumirashi P L, Hersam M C, Dodabalapur A . Nano Lett., 2014,14(6):3683.
[37]
Chen H, Cao Y, Zhang J, Zhou C . Nat. Commun., 2014,5:4097.
[38]
Geier M L, Moudgil K, Barlow S, Marder S R, Hersam M C . Nano Lett., 2016,16(7):4329.
[39]
Li G, Li Q, Jin Y, Zhao Y, Xiao X Y, Jiang K, Wang J P, Fan S S . Nanoscale, 2015,7(42):17693.
[40]
Shahrjerdi D, Franklin A D, Oida S, Ott J A, Tulevski G S, Haensch W . ACS Nano, 2013,7(9):8303.
[41]
Li H, Zhou L . ACS Appl. Mater. Inter., 2015,7(41):22881.
[42]
Kim B, Geier M L, Hersam M C, Dodabalapur A . ACS Appl. Mater. Inter., 2015,7(50):27654.
[43]
Liu X, Wegener M, Polster S, Jank M P, Roosen A, Frey L . J. Disp. Technol., 2016,12(3):214.
[44]
Zeumault A, Ma S, Holbery J . Phys. Status Solidi. A, 2016,213(8):2189.
[45]
Kim H, Choi W S . Ceram. Int., 2017,43(6):4775.
[46]
Chen J Q, Ning H L, Fang Z Q, Tao R Q, Yang C G, Zhou Y C, Yao R H, Xu M, Wang L, Peng J B . J. Phys. D Appl. Phys., 2018,51(16):165103.
[47]
Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H . Nature, 2004,432(7016):488.
[48]
Xie M, Wu S, Chen Z, Khan Q, Wu X, Shao S, Cui Z . RSC Adv., 2016,6(47):41439.
[49]
Huang H, Hu H, Zhu J, Guo T . J. Electron. Mater., 2017,46(7):4497.
[50]
张国成(Zhang G C), 陈惠鹏(Chen H P), 郭太良(Guo T L) . 发光学报 (Chinese Journal of Luminescence), 2017,38(2):194.
[51]
Shen Y K, Liu Z, Wang X L, Ma W K, Chen Z H, Chen T P, Zhang H Y . Solid State Electron., 2017,138:108.
[52]
Yang C G, Fang Z Q, Ning H L, Tao R Q, Chen J Q, Zhou Y C, Zheng Z K, Yao R H, Wang L, Peng J B, Song Y S . Appl. Sci., 2017,7(8):844.
[53]
Du X, Li Y, Herman G S . Nanoscale, 2016,8(43):18469.
[54]
Guo L, Zhu X, Sun S, Cong C, Zhou Q, Sun X, Liu Y . Org. Electron., 2019,69:308.
[55]
Wu X, Chen Z, Zhou T, Shao S, Xie M, Song M, Cui Z . RSC Adv., 5(27):20924.
[56]
Mikolajek M, Reinheimer T, Muth M, Hohwieler P, Hoffmann M J, Binder J R . Adv. Eng. Mater., 2018,20(9):1800318.
[57]
Tong S, Sun J, Yang J . ACS Appl. Mater. Inter., 2018,10(31):25902.
[58]
Park J H, Yoo Y B, Lee K H, Jang W S, Oh J Y, Chae S S, Baik H K . ACS Appl. Mater. Inter., 2013,5(2):410.
[59]
Jones C S, Lu X, Renn M, Stroder M, Shih W S . Microelectron. Eng., 2010,87(3):434.
[60]
Braga D, Ha M, Xie W, Frisbie C D . Appl. Phys. Lett., 2010,97(19):245.
[61]
Zhu Z, Ning H, Cai W, Wei J, Zhou S, Yao R. Lu X, Zhang J, Zhou Z, Peng J . Langmuir, 2018,34(22):6413.
[62]
Zhu Z, Zhang J, Zhou Z, Ning H, Cai W, Wei J, Zhou S, Yao R, Lu X, Peng J . ACS Appl. Mater. Inter., 2019,11(5):5193.
[63]
Cai W, Ning H, Zhu Z, Wei J, Zhou S, Yao R, Fang Z, Huang X, Lu X, Peng J . Nanoscale Res. Lett., 2019,14(1):80.
[64]
Lee C W, Raman Pillai S K, Luan X, Wang Y, Li C M, Chan-Park M B . Small, 2012,8(19):2941.
[65]
Tan T, Liu Z, Lu H, Liu W, Tian H . Opt. Mater., 2010,32(3):432.
[66]
Vescio G, López-Vidrier J, Leghrib R, Cornet A, Cirera A . J. Mater. Chem. C, 2016,4(9):1804.
[67]
Jo G, Choe M, Lee S, Park W, Kahng Y H, Lee T . Nanotechnology, 2012,23(11):112001.
[68]
Zaumseil J, Sirringhaus H . Chem. Rev., 2007,107(4):1296.
[69]
Tao R, Fang Z, Zhang J, Ning H, Chen J, Yang C. Zhou Y, Yao R, Lin W, Peng J . ACS Appl. Mater. Inter., 2018,10(27):22883.
[70]
Hong J Y, Yoon D G, Chin B D, Kim S H . RSC Adv., 2015,5(128):105785.
[71]
Xu W, Hu Z, Liu H, Lan L, Peng J, Wang J, Cao Y . Sci. Rep., 2016,6:29055.
[72]
Okimoto H, Takenobu T, Yanagi K, Miyata Y, Shimotani H, Kataura H, Iwasa Y . Adv. Mater., 2010,22(36):3981.
[73]
Leppäniemi J, Eiroma K, Majumdar H S, Alastalo A . IEEE Electr. Device L., 2016,37(4):445.
[74]
Secor E B, Smith J, Marks T J, Hersam M C . ACS Appl. Mater. Inter., 2016,8(27):17428.
[75]
Fukuda K, Sekine T, Kobayashi Y, Takeda Y, Shimizu M, Yamashita N, Kumaki D, Itoh M, Nagaoka M, Toda T, Saito S, Kurihara M, Sakamoto M, Tokito S . Org. Electron., 2012,13(12):3296.
[76]
Ning H, Zhou Y, Fang Z, Yao R, Tao R, Chen J, Cai W, Zhu Z, Yang C, Wei J, Wang L, Peng J . Nanoscale Res. Lett., 2017,12(1):546.
[77]
Lee Y, Yoon J, Choi B, Lee H, Park J, Jeon M, Han J, Lee J, Kim Y, Kim D H, Kim D M, Choi S J . Appl. Phys. Lett., 2017,111(17):173108.
[78]
Lee S H, Choi W S . J. Disp Technol., 2015,11(9):698.
[79]
Yu Y, Xiao X, Zhang Y K, Li K, Yan C, Wei X L, Chen L, Zhen H Y, Zhou H, Zhang S D, Zheng Z J . Adv. Mater., 2016,28:4926
[80]
Li Y, Lan L, Sun S, Lin Z G, Gao P X, Song W, Song E L, Zhang P, Peng J B . ACS Appl. Mater. Inter., 2017,9(9):8194.
[81]
Scheideler W J, Kumar R, Zeumault A R, Subramanian V . Adv. Funct. Mater., 2017,27(14):1606062.
[82]
Zeng Y, Ning H L, Zheng Z K, Zhang H K, Fang Z Q, Yao R H, Xu M, Wang L, Lan L F, Peng J B, Lu X B . Appl. Phys. Lett., 2017,110(15):153503.
[83]
Li Y, Lan L, Xiao P, Sun S, Lin Z G, Song W, Song E L, Gao P X, Wu W J, Peng J B . ACS Appl. Mater. Inter., 2016,8(30):19643.
[84]
Kim Y H, Kim T H, Lee Y, Kim J W, Kim J, Park S K . J. Nanosci. Nanotechno., 2014,14(11):8158.
[85]
Huang Q, Al-Milaji K N, Zhao H . ACS Appl. Nano Mater., 2018,1(9):4528.
[1] Sun Jiazhen, Kuang Minxuan, Song Yanlin. Control and Application of “Coffee Ring” Effect in Inkjet Printing [J]. Progress in Chemistry, 2015, 27(8): 979-985.