中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 610-632 DOI: 10.7536/PC200534 Previous Articles   Next Articles

• Review •

Research Status and Prospect of Li-Se Batteries

Yusen Ding1, Pu Zhang1, Hong Li1, Wenhuan Zhu1(), Hao Wei1   

  1. 1 Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Contact: Wenhuan Zhu
  • Supported by:
    the National Natural Science Foundation of China(61774102); the Startup Fund for Youngman Research at SJTU(SFYR at SJTU)(19X100040004)
Richhtml ( 60 ) PDF ( 1351 ) Cited
Export

EndNote

Ris

BibTeX

Lithium selenium batteries are very promising next-generation high-energy-density batteries with the properties of high theoretical volume energy density(3253 mAh·cm-3), high electrical conductivity(1×10-3 S·m-1),and environmental friendliness, which have gradually become a research hotspot in the field of electrochemistry. However, at present, lithium selenium batteries still face many problems such as low utilization rate of active materials, low coulomb efficiency, fast capacity decay and shuttle of polyselenides intermediates. In recent years, worldwide researchers have conducted a lot of researches on these issues. For example, a variety of carbon materials, metal compounds, selenium alloys, etc. have been used for packaging modification at the positive electrode. Solid electrolyte interface methods have been used for protection at the negative electrode. We comprehensively review the latest research progress of lithium selenium batteries in cathode, anode, electrolytes, separators, binders, current collectors, etc. especially summarize the sealing of nano selenium, the preparation of solid electrolyte protective layer, the research on multifunctional separators and the application of various binders and current collectors. Finally, we prospect the future development and commercial applications of lithium selenium batteries.

Contents

1 Introduction

2 Electrochemical principles of Li-Se batteries

3 Cathode materials

3.1 Selenium/carbon composite electrodes

3.2 Selenium/auxiliary additive composite electrodes

3.3 Metal compound electrodes

3.4 Selenium alloy composite electrodes

4 Anode materials

4.1 Electrolyte additives

4.2 Protective layer(SEI method)

4.3 Anode modification

5 Lithium selenium battery electrolytes

5.1 Liquid electrolytes

5.2 Solid electrolytes

6 Multifunctional separator and separation of cathode and anode

7 Binder

7.1 Selenium cathode binder

7.2 Binderless

8 Current collectors

8.1 Current collectors' classification

8.2 Current collectors' application

9 Conclusion and outlook

9.1 Cathode material

9.2 Anode material

9.3 Other

9.4 Application and Commercialization

9.5

Prospect

Fig.1 Phase transition of selenium cathode[21]
Fig.2 Se-MCNF composite cathode[23]
Fig.3 Se/Se8-CNT composite cathode[31]
Fig.4 Schematic diagram of selenium adhesion effect[43]
Fig.5 (a) CPAN/Se composite positive electrode synthesis process;(b) CPAN/Se synthesis chemical reaction formula[45]
Fig.6 Carbonized micro porous nitrogen-doped positive electrode[53]
Fig.7 MOF-Ni mesoporous carbon element mapping region:(a) element mapping domain;(b) carbon element mapping;(c) selenium element mapping;(d) nickel element mapping[75]
Table 1 Electrochemical performance table of different types of lithium selenium batteries
Fig.8 Schematic illustration of the proposed strategy for Se cathode stabilization:(a) porous carbon particles(such as SAC) are(b) infiltrated with Se and(c) cast on current collector foil to prepare a regular electrode;(d) cells assembled with an electrolyte containing a solid electrolyte former(such as FEC) are cycled to a potential of the electrolyte(or additive) reduction; and(e) solid electrolyte layer in situ formed both within the pores remaining after Li2Se formation and on the outer surface of the particles serves as an efficient physical barrier for solvent and polyselenide diffusion and the resulting polyselenide dissolution[92]
Fig.9 Bi2Se3 Rectangular nanosheet synthesis[96]
Fig.10 Rate performances of SenS8-n/NMC(n = 1~3) at different current densities[102]
Fig.11 Se2S6/NMC composite material synthesis[102]
Fig.12 Photograph of GenII electrolyte solvent EC-EMC alone, with insoluble Se, with Li2Se, and with a combination of the two[109]
Fig.13 Spectroscopic analysis on chemical and electro-chemical properties of SEI layer: XPS(a) C1s,(b) F1s core spectra,(c) Nyquist plot, and(d) Bode plot of Se-SAC-NR and Se-SAC-FD. Solid lines in Nyquist and Bode plots were fitted to the equivalent circuit(inset of(c))[92]
Fig.14 Impedance analysis for SeS0.7/CPAN cell before test and after fully charge to 3.0 V and rest for 2 h[114]
Fig.15 (a) Schematic configuration of a Li-Se cell with a graphene-polymer separator(b) SEM image and (c) TEM image of the graphene material used for the graphene-polymer separator[34]
Fig.16 Discharge curves of Li-Se cells with(a) the graphene-polymer separator and (b) a polymer separator at 0.5 C.(c) Upper plateau discharge capacities and (d) lower plateau discharge capacities of Li-Se cells with different separators at 0.5 C. (e) Electrochemical impedance spectra of Li-Se cells with a graphene-polymer separator and a polymer separator.(f) Cyclic voltammograms of the cell with the graphene-polymer separator at 0.1 mV·s-1 in the potential window from 1.7 to 2.8 V vs. Li+/Li[34]
Fig.17 Morphology of the carbon interlayer:(a) and(c) before cycling,(b),(d) and(e) after 20 cycles at C/10 rate, and(f) elemental mapping of(e)[117]
Fig.18 (a) Schematic illustration for the in situ synthesis of C/Se composites;(b) Photograph of sealed vacuum glass tube after annealing[123]
Fig.19 Schematic presentation of the procedures to prepare a 3D porous Cu foil from a planar Cu foil[129]
Fig.20 3D current collector: The distribution of the electrons in the current collectors in the electrical field is schematically presented; the dashed lines illustrate the possible position where Li would be deposited[129]
[1]
Yang C H, Xiong J W, Ou X, Wu C F, Xiong X H, Wang J H, Huang K, Liu M L. Mater. Today Energy, 2018, 8: 37.
[2]
Nguyen N, Doan T N L, Hoang T K A, Zhao H B, Chen P. Mater. Today Energy, 2018, 8: 73.
[3]
Uddin M J, Alaboina P K, Cho S J. Mater. Today Energy, 2017, 5: 138.
[4]
Gao H, Ma T Y, Duong T, Wang L, He X M, Lyubinetsky I, Feng Z X, Maglia F, Lamp P, Amine K, Chen Z H. Mater. Today Energy, 2018, 7: 18.
[5]
Makaremi M, Mortazavi B, Singh C V. Mater. Today Energy, 2018, 8: 22.
[6]
Ni L B, Yang G, Sun C Y, Niu G S, Wu Z, Chen C, Gong X X, Zhou C Q, Zhao G J, Gu J, Ji W, Huo X, Chen M, Diao G W. Mater. Today Energy, 2017, 6: 53.
[7]
Xu X Q, Wan Y X, Zuo C, Yan H P, Du M T, Xue G, Zhou D S. Mater. Today Energy, 2018, 7: 80.
[8]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.
[9]
Gu X X, Lai C. Energy Storage Mater., 2019, 23: 190.
[10]
Zhang X, Wang Z, Yao L, Mai Y Y, Liu J Q, Hua X L, Wei H. Mater. Lett., 2018, 213: 143.
[11]
Zhang X, Yao L, Liu S, Zhang Q, Mai Y Y, Hu N T, Wei H. Mater. Today Energy, 2018, 7: 141.
[12]
Wei H, Ding Y S, Li H, Zhang Q, Hu N T, Wei L M, Yang Z. Electrochimica Acta, 2019, 327: 134994.
[13]
Liu S, Yao L, Zhang Q, Li L, Hu N, Wei L, Wei H. Acta Phys.-Chim. Sin., 2017, 33: 2339.
刘帅, 姚路, 章琴, 李路路, 胡南滔, 魏良明, 魏浩. 物理化学学报, 2017, 3: 2339.
[14]
Yu X W, Feng S N, Boyer M J, Lee M, Ferrier R C Jr, Lynd N A, Hwang G S, Wang G B, Swinnea S, Manthiram A. Mater. Today Energy, 2018, 7: 98.
[15]
Hernández G, Lago N, Shanmukaraj D, Armand M, Mecerreyes D. Mater. Today Energy, 2017, 6: 264.
[16]
Kim S, Cho M, Lee Y. Adv. Energy Mater., 2020, 10(5): 1903477.
[17]
Jin J, Tian X C, Srikanth N, Kong L B, Zhou K. J. Mater. Chem. A, 2017, 5(21): 10110.
[18]
Chen D, Yue X Y, Li X L, Wu X J, Zhou Y N. Acta Physico-Chimica Sinica, 2019, 35(7): 667.
陈东, 岳昕阳, 李璕琭, 吴晓京, 周永宁. 物理化学学报, 2019, 35(7): 667.
[19]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

pmid: 28265117
[20]
Eftekhari A. Sustain. Energy Fuels, 2017, 1(1): 14.
[21]
Abouimrane A, Dambournet D, Chapman K W, Chupas P J, Weng W, Amine K. J. Am. Chem. Soc., 2012, 134(10): 4505.

pmid: 22364225
[22]
Zhang L, Lu L, Zhang D C, Hu W T, Wang N, Xu B, Li Y M, Zeng H. Electrochimica Acta, 2016, 209: 423.
[23]
Liu Y X, Si L, Du Y C, Zhou X S, Dai Z H, Bao J C. J. Phys. Chem. C, 2015, 119(49): 27316.
[24]
Yuan B B, Sun X Z, Zeng L C, Yu Y, Wang Q S. Small, 2018, 14(9): 1703252.
[25]
Li J, Zhang C, Wu C J, Tao Y, Zhang L, Yang Q H. Rare Met., 2017, 36(5): 425.
[26]
Balakumar K, Kalaiselvi N. Carbon, 2017, 112: 79.
[27]
He J R, Chen Y F, Lv W, Wen K C, Li P J, Wang Z G, Zhang W L, Qin W, He W D. ACS Energy Lett., 2016, 1(1): 16.
[28]
Han K, Liu Z, Ye H Q, Dai F. J. Power Sources, 2014, 263: 85.
[29]
Cui Y, Zhou X W, Guo W, Liu Y Z, Li T Y, Fu Y Z, Zhu L K. Batter. Supercaps, 2019, 2(9): 784.
[30]
Wang X W, Zhang Z A, Qu Y H, Wang G C, Lai Y Q, Li J. J. Power Sources, 2015, 287: 247.
[31]
Dutta D, Gope S, Negi D S, Datta R, Sood A K, Bhattacharyya A J. J. Phys. Chem. C, 2016, 120(51): 29011.
[32]
Youn H C, Jeong J H, Roh K C, Kim K B. Sci. Rep., 2016, 6: 30865.

doi: 10.1038/srep30865 pmid: 27480798
[33]
Han K, Liu Z, Shen J M, Lin Y Y, Dai F, Ye H Q. Adv. Funct. Mater., 2015, 25(3): 455.
[34]
Fang R P, Zhou G M, Pei S F, Li F, Cheng H M. Chem. Commun., 2015, 51(17): 3667.
[35]
Huang D K, Li S H, Luo Y P, Xiao X, Gao L, Wang M K, Shen Y. Electrochimica Acta, 2016, 190: 258.
[36]
Fan S, Zhang Y, Li S H, Lan T Y, Xu J L. RSC Adv., 2017, 7(34): 21281.
[37]
Zhang J J, Xu Y H, Fan L, Zhu Y C, Liang J W, Qian Y T. Nano Energy, 2015, 13: 592.
[38]
Peng X, Wang L, Zhang X M, Gao B, Fu J J, Xiao S, Huo K F, Chu P K. J. Power Sources, 2015, 288: 214.
[39]
Chen C, Zhao C H, Hu Z B, Liu K Y. Funct. Mater. Lett., 2017, 10(2): 1650074.
[40]
Guo J, Wang Q S, Qi C, Jin J, Zhu Y J, Wen Z Y. Chem. Commun., 2016, 52(32): 5613.
[41]
Cai Q F, Li Y Y, wang L, Li Q W, Xu J, Gao B, Zhang X M, Huo K F, Chu P K. Nano Energy, 2017, 32: 1.
[42]
Zhang Z A, Yang X, Guo Z P, Qu Y H, Li J, Lai Y Q. J. Power Sources, 2015, 279: 88.
[43]
Zhang J J, Fan L, Zhu Y C, Xu Y H, Liang J W, Wei D H, Qian Y T. Nanoscale, 2014, 6(21): 12952.

doi: 10.1039/c4nr03705g pmid: 25233292
[44]
Hu J L, Zhang C C, Zhang L Z. J. Alloy. Compd., 2019, 806: 146.
[45]
Wang H Q, Li S, Chen Z X, Liu H K, Guo Z P. RSC Adv., 2014, 4(106): 61673.
[46]
Burbank R D. Acta Crystallogr., 1951, 4(2): 140.
[47]
Li J, Zhao X X, Zhang Z A, Lai Y Q. J. Alloy. Compd., 2015, 619: 794.
[48]
Kalimuthu B, Nallathamby K. ACS Appl. Mater. Interfaces, 2017, 9(32): 26756.

pmid: 28718630
[49]
Lv H, Chen R P, Wang X Q, Hu Y, Wang Y R, Chen T, Ma L B, Zhu G Y, Liang J, Tie Z X, Liu J, Jin Z. ACS Appl. Mater. Interfaces, 2017, 9(30): 25232.

doi: 10.1021/acsami.7b04321 pmid: 28691792
[50]
Klavetter K C, Pedro de Souza J, Heller A, Mullins C B. J. Mater. Chem. A, 2015, 3(11): 5829.
[51]
Jiang Y, Ma X J, Feng J K, Xiong S L. J. Mater. Chem. A, 2015, 3(8): 4539.
[52]
Qu Y H, Zhang Z A, Jiang S F, Wang X W, Lai Y Q, Liu Y X, Li J. J. Mater. Chem. A, 2014, 2(31): 12255.
[53]
Yi Z Q, Yuan L X, Sun D, Li Z, Wu C, Yang W J, Wen Y W, Shan B, Huang Y H. J. Mater. Chem. A, 2015, 3(6): 3059.
[54]
Li Z Q, Yin L W. Nanoscale, 2015, 7(21): 9597.

pmid: 25951942
[55]
Xie L S, Yu S X, Yang H J, Yang J, Ni J L, Wang J L. Rare Met., 2017, 36(5): 434.
[56]
Jia M, Lu S Y, Chen Y M, Liu T, Han J, Shen B L, Wu X S, Bao S J, Jiang J, Xu M W. J. Power Sources, 2017, 367: 17.
[57]
Zhao C H, Fang S Z, Hu Z B, Qiu S G, Liu K Y. J. Nanoparticle Res., 2016, 18(7): 201.
[58]
Zhao C H, Xu L B, Hu Z B, Qiu S E, Liu K Y. RSC Adv., 2016, 6(53): 47486.
[59]
Jia M, Niu Y B, Mao C P, Liu S G, Zhang Y, Bao S J, Xu M W. J. Colloid Interface Sci., 2017, 490: 747.

pmid: 27988468
[60]
Liu T, Jia M, Zhang Y, Han J, Li Y, Bao S J, Liu D Y, Jiang J, Xu M W. J. Power Sources, 2017, 341: 53.
[61]
Liu T, Dai C L, Jia M, Liu D Y, Bao S J, Jiang J, Xu M W, Li C M. ACS Appl. Mater. Interfaces, 2016, 8(25): 16063.

pmid: 27268221
[62]
Qu Y H, Zhang Z A, Lai Y Q, Liu Y X, Li J. Solid State Ionics, 2015, 274: 71.
[63]
Lai Y Q, Yang F H, Zhang Z A, Jiang S F, Li J. RSC Adv., 2014, 4(74): 39312.
[64]
Zhou J J, Yang J, Xu Z X, Zhang T, Chen Z Y, Wang J L. J. Mater. Chem. A, 2017, 5(19): 9350.
[65]
Zhang H, Yu F Q, Kang W P, Shen Q. Carbon, 2015, 95: 354.
[66]
Zhao-Karger Z, Lin X M, Bonatto Minella C, Wang D, Diemant T, Behm R J, Fichtner M. J. Power Sources, 2016, 323: 213.
[67]
Bergstrom F W. J. Am. Chem. Soc., 1926, 48(1): 146.
[68]
Liu Y X, Si L, Zhou X S, Liu X, Xu Y, Bao J C, Dai Z H. J. Mater. Chem. A, 2014, 2(42): 17735.
[69]
Zhao P, Shiraz M H A, Zhu H Z, Liu Y H, Tao L, Liu J. Electrochimica Acta, 2019, 325: 134931.
[70]
Aboonasr S M H, Zhu H Z, Liu Y L, Sun X L, Liu J. J. Power Sources, 2019, 438: 227059.
[71]
Jia M, Mao C P, Niu Y B, Hou J K, Liu S G, Bao S J, Jiang J, Xu M W, Lu Z S. RSC Adv., 2015, 5(116): 96146.
[72]
Li Z, Yuan L X, Yi Z Q, Liu Y, Huang Y H. Nano Energy, 2014, 9: 229.
[73]
Song J P, Wu L, Dong W D, Li C F, Chen L H, Dai X, Li C, Chen H, Zou W, Yu W B, Hu Z Y, Liu J, Wang H E, Li Y, Su B L. Nanoscale, 2019, 11(14): 6970.

doi: 10.1039/c9nr00924h pmid: 30916057
[74]
Lai Y Q, Gan Y Q, Zhang Z A, Chen W, Li J. Electrochimica Acta, 2014, 146: 134.
[75]
Liu T, Zhang Y, Hou J K, Lu S Y, Jiang J, Xu M W. RSC Adv., 2015, 5(102): 84038.
[76]
Sun D F, Ma S Q, Ke Y X, Collins D J, Zhou H C. J. Am. Chem. Soc., 2006, 128(12): 3896.

doi: 10.1021/ja058777l pmid: 16551082
[77]
Chai S Z, Liu H H, Zhang X, Han Y, Hu N T, Wei L M, Cong F S, Wei H, Wang L. Appl. Surf. Sci., 2016, 384: 539.
[78]
Han Y, Zhang Q, Hu N T, Zhang X, Mai Y Y, Liu J Q, Hua X L, Wei H. Chin. Chem. Lett., 2017, 28(12): 2269.
[79]
Wei H, Chai S Z, Hu N T, Yang Z, Wei L M, Wang L. Chem. Commun., 2015, 51(61): 12178.
[80]
Han Y, Hu N T, Liu S, Hou Z Y, Liu J Q, Hua X L, Yang Z, Wei L M, Wang L, Wei H. Nanotechnology, 2017, 28(33): 33LT01.

doi: 10.1088/1361-6528/aa7bb6 pmid: 28721952
[81]
Chai S Z, Hu N T, Han Y, Zhang X, Yang Z, Wei L M, Wang L, Wei H. RSC Adv., 2016, 6(55): 49425.
[82]
Ding Y S, Wang Y, Su Y J, Yang Z, Liu J Q, Hua X L, Wei H. Chin. Chem. Lett., 2020, 31(1): 193.
[83]
Wu F, Zhao S Y, Lu Y, Li J, Su Y F, Chen L. Progress in Chemistry, 2017, 29(6): 593.
吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6): 593.
[84]
Deng N P, Ma X M, Ruan Y L, Wang X Q, Kang W M, Cheng B W. Progress in Chemistry, 2016, 28(9): 1435.
邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 化学进展, 2016, 28(9): 1435.
[85]
Zhang S T, Zheng M B, Cao J M, Pang H. Progress in Chemistry, 2016, 28(8): 1148.
张松涛, 郑明波, 曹洁明, 庞欢. 化学进展, 2016, 28(8): 1148.
[86]
Wan W B, Pu W H, Ai D S. Progress in Chemistry, 2013, 25(11): 1830.
万文博, 蒲薇华, 艾德生. 化学进展, 2013, 25(11): 1830.
[87]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.
[88]
Ye H, Yin Y X, Zhang S F, Guo Y G. J. Mater. Chem. A, 2014, 2(33): 13293.
[89]
Zhou J Q, Qian T, Xu N, Wang M F, Ni X Y, Liu X J, Shen X W, Yan C L. Adv. Mater., 2017, 29(33): 1701294.
[90]
Xu G L, Liu J Z, Arnine R, Chen Z H, Arnine K. ACS Energy Lett., 2017, 2(3): 605.
[91]
Zeng L X, Chen X, Liu R P, Lin L X, Zheng C, Xu L H, Luo F Q, Qian Q R, Chen Q H, Wei M D. J. Mater. Chem. A, 2017, 5(44): 22997.
[92]
Lee J T, Kim H, Nitta N, Eom K S, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Yushin G. J. Mater. Chem. A, 2014, 2(44): 18898.
[93]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.
[94]
Zhang Z A, Yang X, Wang X W, Li Q, Zhang Z Y. Solid State Ionics, 2014, 260: 101.
[95]
Li W J, Zhou Y N, Fu Z W. Electrochimica Acta, 2010, 55(28): 8680.
[96]
Xu H M, Chen G, Jin R C, Chen D H, Wang Y, Pei J. RSC Adv., 2014, 4(17): 8922.
[97]
Bludská J, Jakubec I, Karamazov S, Horák J, Uher C. J. Solid State Chem., 2010, 183(12): 2813.
[98]
Mao F X, Guo J, Zhang S H, Yang F, Sun Q, Ma J M, Li Z. RSC Adv., 2016, 6(44): 38228.

doi: 10.1039/C6RA01301E
[99]
Tang Q M, Cui Y H, Wu J W, Qu D Y, Baker A P, Ma Y H, Song X N, Liu Y C. Nano Energy, 2017, 41: 377.
[100]
Wei Y J, Tao Y Q, Kong Z K, Liu L, Wang J T, Qiao W M, Ling L C, Long D H. Energy Storage Mater., 2016, 5: 171.
[101]
Zhang H W, Zhou L, Huang X D, Song H, Yu C Z. Nano Res., 2016, 9(12): 3725.
[102]
Sun F G, Cheng H Y, Chen J Z, Zheng N, Li Y S, Shi J L. ACS Nano, 2016, 10(9): 8289.

pmid: 27522865
[103]
Li X N, Liang J W, Zhang K L, Hou Z G, Zhang W Q, Zhu Y C, Qian Y T. Energy Environ. Sci., 2015, 8(11): 3181.
[104]
Im H S, Lim Y R, Cho Y J, Park J, Cha E H, Kang H S. J. Phys. Chem. C, 2014, 118(38): 21884.
[105]
Zeng L C, Li W H, Jiang Y, Yu Y. Rare Met., 2017, 36(5): 339.
[106]
Xu J T, Ma J M, Fan Q H, Guo S J, Dou S X. Adv. Mater., 2017, 29(28): 1606454.
[107]
Babu D B, Ramesha K. Electrochimica Acta, 2016, 219: 295.
[108]
Wu C, Yuan L X, Li Z, Yi Z Q, Zeng R, Li Y R, Huang Y H. Sci. China Mater., 2015, 58(2): 91.
[109]
Cui Y J, Abouimrane A, Sun C J, Ren Y, Amine K. Chem. Commun., 2014, 50(42): 5576.
[110]
Jiang S F, Zhang Z A, Lai Y Q, Qu Y H, Wang X W, Li J. J. Power Sources, 2014, 267: 394.
[111]
Lee J T, Kim H, Oschatz M, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Kaskel S, Yushin G. Adv. Energy Mater., 2015, 5(1): 1400981.

doi: 10.1002/aenm.201400981
[112]
Eftekhari A, Liu Y, Chen P. J. Power Sources, 2016, 334: 221.

doi: 10.1016/j.jpowsour.2016.10.025
[113]
Jin Y, Liu K, Lang J L, Jiang X, Zheng Z K, Su Q H, Huang Z Y, Long Y Z, Wang C A, Wu H, Cui Y. Joule, 2020, 4(1): 262.

doi: 10.1016/j.joule.2019.09.003
[114]
Luo C, Zhu Y J, Wen Y, Wang J J, Wang C S. Adv. Funct. Mater., 2014, 24(26): 4082.

doi: 10.1002/adfm.201303909
[115]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235
[116]
Luo C, Xu Y H, Zhu Y J, Liu Y H, Zheng S Y, Liu Y, Langrock A, Wang C S. ACS Nano, 2013, 7(9): 8003.

pmid: 23944942
[117]
Zhang Z A, Zhang Z Y, Zhang K, Yang X, Li Q. RSC Adv., 2014, 4(30): 15489.

doi: 10.1039/C4RA00446A
[118]
Yang Z W, Zhu K J, Dong Z H, Jia D D, Jiao L F. ACS Appl. Mater. Interfaces, 2019, 11(43): 40069.

doi: 10.1021/acsami.9b14215 pmid: 31580051
[119]
Yang Y, Hong X J, Song C L, Li G H, Zheng Y X, Zhou D D, Zhang M, Cai Y P, Wang H X. J. Mater. Chem. A, 2019, 7(27): 16323.

doi: 10.1039/C9TA04614C
[120]
Zhang S S. J. Power Sources, 2007, 164(1): 351.

doi: 10.1016/j.jpowsour.2006.10.065
[121]
Zeng L C, Zeng W C, Jiang Y, Wei X, Li W H, Yang C L, Zhu Y W, Yu Y. Adv. Energy Mater., 2015, 5(4): 1401377.

doi: 10.1002/aenm.201401377
[122]
Yang C P, Xin S, Yin Y X, Ye H, Zhang J, Guo Y G. Angew. Chem. Int. Ed., 2013, 52(32): 8363.

doi: 10.1002/anie.v52.32
[123]
Luo C, Wang J J, Suo L M, Mao J F, Fan X L, Wang C S. J. Mater. Chem. A, 2015, 3(2): 555.

doi: 10.1039/C4TA04611K
[124]
Arora P, White R E, Doyle M. J. Electrochem. Soc., 1998, 145(10): 3647.

doi: 10.1149/1.1838857
[125]
Yao M, Okuno K, Iwaki T, Tanase S, Harada K, Kato M, Emura K, Sakai T. J. Power Sources, 2007, 171(2): 1033.

doi: 10.1016/j.jpowsour.2007.06.211
[126]
Yao M, Okuno K, Iwaki T, Kato M, Tanase S, Emura K, Sakai T. J. Power Sources, 2007, 173(1): 545.

doi: 10.1016/j.jpowsour.2007.08.014
[127]
Liu S, Hou H, Hu W, Liu X, Duan J, Meng R. Bulletin of the Chinese Creamic Society, 2015, 34(9): 2562.
[128]
Kundu D P, Krumeich F, Nesper R. J. Power Sources, 2013, 236: 112.

doi: 10.1016/j.jpowsour.2013.02.050
[129]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6: 8058.

pmid: 26299379
[130]
Zeng L C, Wei X, Wang J Q, Jiang Y, Li W H, Yu Y. J. Power Sources, 2015, 281: 461.

doi: 10.1016/j.jpowsour.2015.02.029
[131]
Huang X L, Deng J H, Qi Y R, Liu D Y, Wu Y K, Gao W, Zhong W, Zhang F, Bao S J, Xu M W. Inorg. Chem. Front., 2020, 7(5): 1182.

doi: 10.1039/C9QI01506J
[132]
Huang X L, Wang W, Deng J H, Gao W, Liu D Y, Ma Q R, Xu M W. Inorg. Chem. Front., 2019, 6(8): 2118.

doi: 10.1039/C9QI00437H
[133]
Li J, Zhang C, Tao Y, Ling G, Yang Q. New Carbon Mater., 2016, 31: 459.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[7] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[8] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[9] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[10] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[11] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[12] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[15] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.