中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 1003-1014 DOI: 10.7536/PC191005 Previous Articles   

• Review •

Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy

Dong Li1, Yuying Zheng1, Haoxiong Nan1, Yanxiong Fang1, Quanbing Liu1,**(), Qiang Zhang2,**()   

  1. 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Quanbing Liu, Qiang Zhang
  • About author:
    ** e-mail:(Quanbing Liu);
  • Supported by:
    National Natural Science Foundation of China(U1801257); National Natural Science Foundation of China(21606050); National Natural Science Foundation of China(21975056); Zhujiang Science and Technology New Star Project(201806010039); Characteristic Innovation Projects of Colleges in Guangdong Province(2017KTSCX055)
Richhtml ( 58 ) PDF ( 2716 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur batteries have the advantages of high theoretical energy density, low cost and environmental friendliness, and they are the most promising next-generation high-energy density secondary battery systems. Currently, liquid lithium-sulfur batteries based on organic electrolytes have some problems such as lithium polysulfides(LiPSs) shuttle effect, electrolyte flammability and lithium dendrite, resulting in low coulombic efficiency and poor cycle stability of lithium-sulfur batteries, and there are serious safety hazards. The uses of solid electrolytes(gel polymers, solid polymers, ceramics, composite electrolytes, etc.) in place of organic liquid electrolytes are effective strategies to address the above problems. Herein, we present the research status of solid-state electrolytes of lithium-sulfur batteries, and summarize their advantages/disadvantages and improvement strategies, and focuses on the research progress of ceramic solid electrolytes. Finally, we forecast future development trends of solid lithium-sulfur batteries.

Contents

1 Introduction

2 Solid electrolytes

2.1 Gel polymer electrolytes

2.2 Solid-state polymer electrolytes

2.3 Ceramic electrolytes

2.4 Composite electrolytes

3 Conclusion and outlook

Fig.1 Schematic illustration of Li+ ion transport and polysulfide blocking mechanism for the membrane of PPZr-GPE[18]. Copyright 2017, Royal Society of Chemistry.
Fig.2 Scheme of the multifunction of PDA-PVDF for quasi-solid-state Li-S battery[19]. Copyright 2018, Royal Society of Chemistry.
Fig.3 (a) LiFSI helps the forming of stable interface layer[28]. Copyright 2017, American Chemical Society.(b) Schematic diagram showing the preparation of an ALD coated LATP SSE and the configuration of ASSLSBs[30]. Copyright 2018, Royal Society of Chemistry.(c) Schematic mechanism of HNT addition for enhanced ionic conductivity[35]. Copyright 2017, Elsevier.
Fig.4 Crystal structure of (a) Li6PS5Cl[46]. Copyright 2019, Royal Society of Chemistry. (b) Li9.54Si1.74P1.44S11.7C l 0.3 [ 64 ] . Copyright 2018, Wiley. (c) Li10GeP2 S 12 [ 65 ] . Copyright 2016, American Chemical Society. (d) NaSICON[63]. Copyright 2014, American Chemical Society. (e) Li3 x La2/3- x Ti O 3 [ 66 ] . Copyright 2003, American Chemical Society. (f) Li7La3Zr2 O 12 [ 67 ] . Copyright 2013, American Chemical Society.
Fig.5 (a) Sketch of the cell with a bilayer electrolyte configuration;(b) Discharge/charge profiles of the Li-S battery with different electrolytes[76].(c) Schematic illustration of an all solid-state Li-S battery based on hybrid electrolytes;(d) Arrhenium plots of the conductivity of nanocomposite LLZO-PEO-LiClO4 with different LLZO concentrations[1]. Copyright 2017, American Chemical Society.
Fig.6 (a) Schematic of fabrication process of LPS-PEO-LiClO4 hybrid solid electrolyte,(b) Schematic illustration of an all solid-state Li-S battery structure based on LPS-PEO-LiClO4 hybrid solid electrolyte[77]. Copyright 2018, American Chemical Society.
Table 1 The electrochemical performances of Li-S batteries with various solid-state electrolytes
Table 2 Comparison of advantages and disadvantages of various SSEs electrolytes for lithium-sulfur batteries
[1]
Tao X Y , Liu Y Y , Liu W , Zhou G M , Zhao J , Lin D C , Zu C X , Sheng O W , Zhang W K , Lee H W , Cui Y . Nano Lett., 2017,17:2967. doi: 10.1021/acs.nanolett.7b00221 https://www.ncbi.nlm.nih.gov/pubmed/28388080

pmid: 28388080
[2]
Ji X L , Lee K T , Nazar L F . Nat. Mater., 2009,8:500. https://www.ncbi.nlm.nih.gov/pubmed/19448613

pmid: 19448613
[3]
Pang Q , Tang J T , Huang H , Liang X , Hart C , Tam K C , Nazar L F . Adv. Mater., 2015,27:6021. doi: 10.1002/adma.201502467 https://www.ncbi.nlm.nih.gov/pubmed/26314378

pmid: 26314378
[4]
Song J X , Xu T , Gordin M L , Zhu P Y , Lu D P , Jiang Y B , Chen Y S , Duan Y H , Wang D H . Adv. Funct. Mater., 2014,24:1243.
[5]
Ji L W , Rao M M , Zheng H M , Zhang L , Li Y C , Duan W H , Guo J H , Cairns E J , Zhang Y G . J. Am. Chem. Soc., 2011,133:18522. doi: 10.1021/ja206955k https://www.ncbi.nlm.nih.gov/pubmed/22017295

pmid: 22017295
[6]
Pang Q , Kundu D , Cuisinier M , Nazar L F . Nat. Commun., 2014,5:4759. doi: 10.1038/ncomms5759 https://www.ncbi.nlm.nih.gov/pubmed/25154399

pmid: 25154399
[7]
Wang X L , Li G , Li J D , Zhang Y , Wook A , Yu A P , Chen Z W . Energ. Environ. Sci., 2016,9:2533.
[8]
Pu J , Shen Z H , Zheng J X , Wu W L , Zhu C , Zhou Q W , Zhang H G , Pan F . Nano Energy, 2017,37:7.
[9]
Yu X W , Manthiram A . Adv. Funct. Mater., 2019,29:1805996.
[10]
Liu W , Lee S W , Lin D C , Shi F F , Wang S , Sendek A D , Cui Y . Nat. Energy, 2017,2:17035.
[11]
Xu R C , Xia X H , Li S H , Zhang S Z , Wang X L , Tu J P . J. Mater. Chem. A, 2017,5:6310. doi: 10.1039/C7TA01147D http://xlink.rsc.org/?DOI=C7TA01147D
[12]
Wang Y , Richards W D , Ong S P , Miara L J , Kim J C , Mo Y F , Ceder G . Nat. Mater., 2015,14:1026. doi: 10.1038/nmat4369 https://www.ncbi.nlm.nih.gov/pubmed/26280225

pmid: 26280225
[13]
Gu S , Huang X , Wang Q , Jin J , Wang Q S , Wen Z Y , Qian R . J. Mater. Chem. A, 2017,5:13971.
[14]
Xin S , You Y , Wang S F , Gao H C , Yin Y X , Guo Y G . ACS Energy Lett., 2017,2:1385
[15]
Han F D , Yue J , Fan X L , Gao T , Luo C , Ma Z H , Suo L M , Wang C S . Nano Lett., 2016,16:4521. doi: 10.1021/acs.nanolett.6b01754 https://www.ncbi.nlm.nih.gov/pubmed/27322663

pmid: 27322663
[16]
Sun C W , Liu J , Gong Y D , Wilkinson D P , Zhang J J . Nano Energy, 2017,33:363.
[17]
Lei D N , Shi K , Ye H , Wan Z P , Wang Y Y , Shen L , Li B H , Yang Q H , Kang F Y , He Y B . Adv. Funct. Mater., 2018,28:1707570.
[18]
Gao S , Wang K L , Wang R X , Jiang M , Han J , Gu T T , Cheng S J , Jiang K . J. Mater. Chem. A, 2017,5:17889.
[19]
Han D D , Liu S , Liu Y T , Zhang Z , Li G R , Gao X P . J. Mater. Chem. A, 2018,6:18627.
[20]
Song D Y , Yu C , Chen Y F , He J R , Zhao Y , Li P J , Lin W , Fu L . Solid State Ionics, 2015,282:31.
[21]
Ahn J H , Wang G X , Liu H K , Dou S W . J. Power Sources, 2003,11:422.
[22]
Manuel A , Nahm K S . Polymer, 2006,47:5952.
[23]
Nagajothi A J , Kannan R , Rajashabala S . Polym. Bull., 2017,74:4887.
[24]
Natarajan A , Stephan A M , Chan C H , Kalarikkal N , Thomas S . J. Appl. Polym. Sci., 2017,134. https://www.ncbi.nlm.nih.gov/pubmed/28579635

pmid: 28579635
[25]
Tsutsumi H , Matsuo A , Takase K , Doi S , Hisanaga A , Onimura K , Oishi T . J. Power Sources, 2000, 90: 33. doi: 10.1016/S0378-7753(00)00444-4 https://linkinghub.elsevier.com/retrieve/pii/S0378775300004444
[26]
Raghavan P , Manuel J , Zhao X H , Kim D S , Ahn J H , Nah C W . J. Power Sources, 2011,196:6742.
[27]
Fenton D E , Parker J M , Wright P V . Polymer, 1973,14:589.
[28]
Judez X , Zhang H , Li C M , Gonzalez-Marcos J A , Zhou Z B , Armand M , Rodriguez Martinez L M . J. Phys. Chem. Lett., 2017,8:1956. doi: 10.1021/acs.jpclett.7b00593 https://www.ncbi.nlm.nih.gov/pubmed/28407471

pmid: 28407471
[29]
Zhang Y G , Zhao Y , Gosselink D , Chen P . Ionics, 2014,21:381.
[30]
Liang J N , Sun Q , Zhao Y , Sun Y P , Wang C H , Li W H , Li M S , Wang D W , Li X , Liu Y L , Adair K , Li R Y , Zhang L , Yang R , Lu S G , Huang H , Sun X L . J. Mater. Chem. A, 2018,6:23712.
[31]
Zhu P , Yan C Y , Dirican M , Zhu J D , Zang J , Selvan R K , Chung C C , Jia H , Li Y , Kiyak Y , Wu N Q , Zhang X W . J. Mater. Chem. A, 2018,6:4279.
[32]
Wang C , Yang Y F , Liu X J , Zhong H , Xu H , Xu Z B , Shao H X , Ding F . ACS Appl. Mater. Inter., 2017,9:13694.
[33]
Zhao Y R , Wu C , Peng G , Chen X T , Yao X Y , Bai Y , Wu F , Chen S J , Xu X X . J. Power Sources, 2016,301:47.
[34]
Li X , Wang D H , Wang H C , Yan H F , Gong Z L , Yang Y . ACS Appl. Mater. Inter., 2019,11:22745.
[35]
Lin Y , Wang X M , Liu J , Miller J D . Nano Energy, 2017,31:478.
[36]
Kataoka K , Akimoto J . J. Ceram. Soc. Jpn., 2019,127:521.
[37]
Gao Z H , Sun H B , Fu L , Ye F L , Zhang Y , Luo W , Huang Y H . Adv. Mater., 2018,30:1705702.
[38]
Ma Z , Xue H G , Guo S P . J. Mater. Sci., 2017,53:3927.
[39]
Sun Y Z , Huang J Q , Zhao C Z , Zhang Q . Sci. China Chem., 2017,60:1508.
[40]
Kennedy J G , Zhang Z . J. Electrochem. Soc., 1988,135:859.
[41]
Minami T , Hayashi A , Tatsumisago M . Solid State Ionics, 2000,136:1015.
[42]
Tsukasaki H , Mori S , Shiotani S , Yamamura H . Solid State Ionics, 2018,317:122.
[43]
Seino Y , Ota T , Takada K , Hayashi A , Tatsumisago M . Energ. Environ. Sci., 2014,7:627.
[44]
Yubuchi S , Uematsu M , Hotehama C , Sakuda A , Hayashi A , Tatsumisago M . J. Mater. Chem. A, 2019,7:558.
[45]
Wang S , Zhang Y B , Zhang X , Liu T , Lin Y H , Shen Y , Li L L , Nan C W . ACS Appl. Mater. Inter., 2018,10:42279.
[46]
Ghidiu M , Ruhl J , Culver S P , Zeier W G . J. Mater. Chem. A, 2019,7:17735.
[47]
Rangasamy E , Liu Z C , Gobet M , Pilar K , Sahu G , Zhou W , Wu H , Greenbaum S , Liang C D . J. Am. Chem. Soc., 2015,137:1384.
[48]
Minafra N , Culver S P , Krauskopf T , Senyshyn A , Zeier W G . J. Mater. Chem. A, 2018,6:645.
[49]
Yubuchi S , Uematsu M , Deguchi M , Hayashi A , Tatsumisago M . ACS Appl. Energy Mater., 2018,1:3622.
[50]
Zhou L , Park K H , Sun X , Lalère F , Adermann T , Hartmann P , Nazar L F . ACS Energy Lett., 2018,4:265.
[51]
Choi S , Ann J , Do J , Lim S , Park C , Shin D W . J. Electrochem Soc., 2018,166:A5193.
[52]
Chida S , Miura A , Rosero-Navarro N C , Higuchi M , Phuc N H H , Muto H , Matsuda A , Tadanaga K . Ceram Int., 2018,44:742.
[53]
Kanno R , Murayama M . J. Electrochem. Soc., 2001,148:A742.
[54]
Wang Y M , Liu Z Q , Zhu X L , Tang Y F , Huang F Q . J. Power Sources, 2013,224:225.
[55]
Zhou P F , Wang J B , Cheng F Y . Chem. Commun., 2016,52:6091.
[56]
Sahu G , Lin Z , Li J H , Liu Z C , Dudney N , Liang C D . Energ. Environ. Sci., 2014,7:1053.
[57]
Kamaya N , Homma K , Yamakawa Y , Hirayama M , Kanno R , Yonemura M , Kamiyama T , Kato Y , Hama S , Kawamoto K , Mitsui A . Nat. Mater., 2011,10:682. doi: 10.1038/nmat3066 https://www.ncbi.nlm.nih.gov/pubmed/21804556

pmid: 21804556
[58]
Bron P , Johansson S , Zick K , Schmedt auf der Günne J , Dehnen S , Roling B . J. Am. Chem. Soc., 2013,135:15694. doi: 10.1021/ja407393y https://www.ncbi.nlm.nih.gov/pubmed/24079534

pmid: 24079534
[59]
Bron P , Dehnen S , Roling B . J. Power Sources, 2016,329:530. doi: 10.1016/j.jpowsour.2016.08.115 https://linkinghub.elsevier.com/retrieve/pii/S0378775316311351
[60]
Ong S P , Mo Y F , Richards W D , Miara L , Lee H S , Ceder G . Energ. Environ. Sci., 2013,6:148.
[61]
Xu R C , Wu Z , Zhang S Z , Wang X L , Xia Y , Xia X H , Huang X H , Tu J P . Chem. Eur. J., 2017,23:13950. doi: 10.1002/chem.201703116 https://www.ncbi.nlm.nih.gov/pubmed/28722816

pmid: 28722816
[62]
Yao X Y , Huang N , Han F , Zhang Q , Wan H L , Mwizerwa J P , Wang C S , Xu X X . Adv. Energy Mater., 2017,7:1602923.
[63]
Goodenough J B , Hong H Y P , Kafalas J A . Mat. Res. Bull., 1976,11:203.
[64]
Xu R C , Zhang S Z , Wang X L , Xia Y , Xia X H , Wu J B , Gu C D , Tu J P . Chem. Eur. J., 2018,24:6007. doi: 10.1002/chem.201704568 https://www.ncbi.nlm.nih.gov/pubmed/29071773

pmid: 29071773
[65]
Weber D A , Senyshyn A , Weldert K S , Wenzel S , Zhang W B , Kaiser R , Berendts S , Janek J , Zeier W G . Chem. Mater., 2016,28:5905.
[66]
Stramare S , Thangadurai V , Weppner W . Chem. Mater., 2003,15:3974.
[67]
Jalem R , Yamamoto Y , Shiiba H , Nakayama M , Munakata H , Kasuga T , Kanamura K . Chem. Mater., 2013,25:425.
[68]
Hallopeau L , Bregiroux D , Rousse G , Portehault D , Stevens P , Toussaint G , Laberty R C . J. Power Sources, 2018,378:48.
[69]
Wang S F , Ding Y , Zhou G M , Yu G H , Manthiram A . ACS Energy Lett., 2016,1:1080.
[70]
Hartmann P , Leichtweiss T , Busche M R , Schneider M , Reich M , Sann J , Adelhelm P , Janek J . J. Phys. Chem. C, 2013,117:21064. doi: 10.1021/jp4051275 https://pubs.acs.org/doi/10.1021/jp4051275
[71]
Li Y T , Zhou W D , Chen X , Lu X J , Cui Z M , Xin S , Xue L G , Jia Q X , Goodenough J B . Proc. Natl. Acad. Sci., 113:13313. doi: 10.1073/pnas.1615912113 https://www.ncbi.nlm.nih.gov/pubmed/27821751

pmid: 27821751
[72]
Yu X W , Bi Z H , Zhao F , Manthiram A . Adv. Energy Mater., 2016,6:1601392. doi: 10.1002/aenm.201601392 http://doi.wiley.com/10.1002/aenm.201601392
[73]
Luo J B , Zhong S W , Huang Z Y , Huang B , Wang C A . Solid State Ionics, 2019,338:1. doi: 10.1016/j.ssi.2019.04.010 https://linkinghub.elsevier.com/retrieve/pii/S0167273819301766
[74]
Hayashi A , Harayama T , Mizuno F , Tatsumisago M . J. Power Sources, 2006,163:289. doi: 10.1016/j.jpowsour.2006.06.018 https://linkinghub.elsevier.com/retrieve/pii/S0378775306011682
[75]
Chen S J , Zhao Y R , Yang J , Yao L L , Xu X X . Ionics, 2017,23:2603. doi: 10.1007/s11581-016-1905-9 http://link.springer.com/10.1007/s11581-016-1905-9
[76]
Judez X , Zhang H , Li C M , Eshetu G G , Zhang Y , Gonzalez-Marcos J A , Armand M , Rodriguez M L M . J. Phys. Chem. Lett., 2017,8:3473. doi: 10.1021/acs.jpclett.7b01321 https://www.ncbi.nlm.nih.gov/pubmed/28696704

pmid: 28696704
[77]
Xu X Y , Hou G M , Nie X K , Ai Q , Liu Y , Feng J K , Zhang L , Si P C , Guo S R , Ci L J . J. Power Sources, 2018,400:212. doi: 10.1016/j.jpowsour.2018.08.016 https://linkinghub.elsevier.com/retrieve/pii/S0378775318308759
[78]
Zhang X , Liu T , Zhang S F , Huang X , Xu B Q , Lin Y H , Xu B , Li L L , Nan C W , Shen Y . J. Am. Chem. Soc., 2017,139:13779. doi: 10.1021/jacs.7b06364 https://www.ncbi.nlm.nih.gov/pubmed/28898065

pmid: 28898065
[79]
Hood Z D , Wang H , Li Y C , Pandian A S , Parans P M , Liang C D . Solid State Ionics, 2015,283:75. doi: 10.1016/j.ssi.2015.10.014 https://linkinghub.elsevier.com/retrieve/pii/S016727381500404X
[80]
Rangasamy E , Sahu G , Keum J K , Rondinone A J , Dudney N J , Liang C D . J. Mater. Chem. A, 2014,2:4111.
[81]
Umeshbabu E , Zheng B Z , Zhu J P , Wang H C , Li Y X , Yang H . ACS Appl. Mater. Inter., 2019,11, 18436.
[82]
Xia Y , Liang Y F , Xie D , Wang X L , Zhang S Z , Xia X H , Gu C D , Tu J P . Chem. Eng. J., 2019,358:1047.
[83]
Liu M , Zhou D , He Y B , Fu Y Z , Qin X Y , Miao C , Du H D , Li B H , Yang Q H , Lin Z Q , Zhao T S , Kang F Y . Nano Energy, 2016,22:278.
[84]
Yang W , Yang W , Feng J N , Ma Z P , Shao G J . Electrochim Acta, 2016,210:71.
[85]
Li W Y , Pang Y , Zhu T C , Wang Y G , Xia Y Y . Solid State Ionics, 2018,318:82. doi: 10.1016/j.ssi.2017.08.018 https://linkinghub.elsevier.com/retrieve/pii/S0167273817305593
[86]
Xu R C , Xia X H , Wang X L , Xia Y , Tu J P . J. Mater. Chem. A, 2017,5:2829.
[87]
Huang X , Liu C , Lu Y , Xiu T P , Jin J , Badding M E , Wen Z Y . J. Power Sources, 2018,382:190. doi: 10.1016/j.jpowsour.2017.11.074 https://linkinghub.elsevier.com/retrieve/pii/S0378775317315574
[88]
Li W L , Xing Y J , Xing X Y , Li Y H , Yang G , Xu L X . Electrochim Acta, 2013,112:183.
[89]
He W S , Cui Z L , Liu X C , Cui Y Y , Chai J C , Zhou X H , Liu Z H , Cui G L . Electrochim Acta, 2017,225:151.
[90]
Dhatarwal P , Choudhary S , Sengwa R J . Compos. Commun., 2018,10:11.
[91]
Adnan S B R S , Mohamed N S . Mater. Charact., 2014,96:249.
[92]
He Z J , Chen L , Zhang B C , Liu Y C , Fan L Z . J. Power Sources, 2018,392:232.
[1] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[2] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[3] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[4] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[5] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[6] Gao Feifei, Wang Yuebo. Electrochemical Detection of Protein Phosphorylation [J]. Progress in Chemistry, 2014, 26(05): 856-865.
[7] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[8] Zhong Yiliang, Mo Zaiyong, Yang Lijun, Liao Shijun*. Application of Modified Graphene for Cathode Catalysts in Fuel Cells [J]. Progress in Chemistry, 2013, 25(05): 717-725.
[9] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[10] Wei Yan, Gao Chao, Yang Ran, Wang Lun, Liu Jinhuai, Huang Xingjiu. Application of Nanomaterials Modified Electrode in Detection of Heavy Metal Ions [J]. Progress in Chemistry, 2012, 24(01): 110-121.
[11] Gao Chengyao, Chang Ming, Li Xiaowei, Li Cuiping. Electroanalytical Applications of Boron Doped Diamond Electrode [J]. Progress in Chemistry, 2011, 23(5): 951-962.
[12] . Application of Quantum Dots Based Electrochemical Biosensors [J]. Progress in Chemistry, 2010, 22(11): 2179-2190.
[13] . Research Progress of Hydrogel-modified Bio-Electrodes [J]. Progress in Chemistry, 2010, 22(06): 1195-1202.
[14] . UVA Light-Assisted Anticancer Drugs---Study on 4-Thiothymidine & Its Analogues [J]. Progress in Chemistry, 2010, 22(05): 784-795.
[15] Ruan Bei Yan Baijun Zhang Jiayun. Novel La2Mo2O9Oxide-Ion Conductor [J]. Progress in Chemistry, 2010, 22(01): 44-50.