中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 950-965 DOI: 10.7536/PC191106 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process

Deying Mu1,3, Zhu Liu1, Shan Jin1, Yuanlong Liu1, Shuang Tian2,**(), Changsong Dai1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
    2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
    3. School of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
  • Received: Online: Published:
  • Contact: Shuang Tian, Changsong Dai
  • About author:
    ** e-mail: (Shuang Tian);
    .(Changsong Dai)
  • Supported by:
    Foundation of Key Program of Sci-Tech Innovation in Ningbo(2019B10114); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2018138)
Richhtml ( 73 ) PDF ( 4549 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of energy storage devices with rapid development momentum, lithium ion batteries(LIBs)alleviate the dependence on fossil fuels in energy field and reduce the increasingly severe environmental pressure. A large number of spent lithium ion batteries are not only hazardous wastes, but also resources with high added value from different perspectives. Therefore, it is of great challenge and practical significance to realize high-efficient recycling and reuse of spent lithium ion batteries with progressively diverse components through innovation and combination of different technical means. Starting from the pretreatment process, the technical means and requirements of a series of processes such as deactivation and discharge, dismantling and classification, crushing and sieving, separation process, acid leaching and impurity removal are described in detail. This review discusses the typical strategies of reuse from three aspects and analyzes the advantages and disadvantages of various techniques in the process of material regeneration, structural repair and re-synthesis of cathode materials. In addition, the harmless treatment and recovery of spent electrolyte are discussed, especially the application of supercritical CO2 extraction process. Finally, the outlook is put forward in view of the existing problems at the present stage to provide references for subsequent research and industrial applications of spent lithium ion battery recycling.

Contents

1 Introduction

2 Overview of spent lithium ion battery recycling

3 Pretreatment of spent lithium ion batteries

3.1 Discharge and deactivation

3.2 Dismantling and classification

3.3 Crushing and sieving

3.4 Separation

4 Dissolution and purification of spent materials

4.1 Acid leaching process

4.2 Removal of impurities

5 Recycle and reuse of spent materials

5.1 Recovery of metals and raw materials

5.2 Direct regeneration of cathode materials

5.3 Re-synthesis of cathode materials

6 Non-hazardous treatment and recovery of spent electrolyte

6.1 Harmless disposal by conventional physical and chemical methods

6.2 Reclamation by supercritical CO2 extraction

7 Conclusion and outlook

Fig.1 Daily averaged CO2 from four global monitoring division baseline observatories and CO2 radiative forcing[3]
Fig.2 Classification of battery recycling processes and final reused products
Fig.3 Simplified diagram of whole pretreatment processes for spent lithium ion batteries
Table 1 Typical research works about the inorganic and organic acid leaching for spent lithium-ion batteries in recent years
Fig.4 Effect on leaching efficiency of (a) initial acid concentration, (b) solid/liquid ratio, (c) amount of H2O2, and (d) metal leaching efficiencies under optimized conditions[48]
Fig.5 The changing concentrations of metal ions in the solution through adjusting pH value of leaching solution(a, b) and the effect of different pH buffer(c, d) [55]
Fig.6 Mechanism and process of direct regeneration in spent cathode materials[70,71]
Fig.7 Schematic diagram of supercritical CO2 extraction of spent electrolyte(a), the components (b, c) and electrochemical window (d) of recovered electrolyte[100]
[1]
Dunn J B , Gaines L , Sullivan J , Wang M Q . Environmental Science & Technology, 2012,46(22):12704. doi: 10.1021/es302420z https://www.ncbi.nlm.nih.gov/pubmed/23075406

pmid: 23075406
[2]
Adesina O , Anzai I A , Avalos J L , Barstow B . Chem, 2017,2(1):20.
[3]
Butler J H , Montzka S A . The NOAA Annual Greenhouse Gas Index(AGGI), Updated Spring 2019. [2010-11]. https://www.esrl.noaa.gov/gmd/aggi/aggi. https://www.esrl.noaa.gov/gmd/aggi/aggi
[4]
Xiong S Q , Ji J P , Ma X M . Energies, 2019,12(5):834. doi: 10.3390/en12050834 https://www.mdpi.com/1996-1073/12/5/834
[5]
Dehghani-Sanij A R , Tharumalingam E , Dusseault M B , Fraser R . Renewable & Sustainable Energy Reviews, 2019,104:192.
[6]
Soltani M , Ronsmans J , Kakihara S , Kakihara S , Jaguemont J , van den Bossche P , van Mierlo J . Applied Sciences-Basel., 2018,8(7):1176.
[7]
Fang S C , Ke B R , Chung C Y . Energies, 2017,10(7):890. doi: 10.3390/en10070890 http://www.mdpi.com/1996-1073/10/7/890
[8]
Liu T F , Zhang Y P , Chen C , Lin Z , Zhang S Q , Lu J . Nature Communications, 2019,10:1965. doi: 10.1038/s41467-019-09933-0 https://www.ncbi.nlm.nih.gov/pubmed/31036805

pmid: 31036805
[9]
Larcher D , Tarascon J M . Nature Chemistry, 2015,7(1):19. doi: 10.1038/nchem.2085 https://www.ncbi.nlm.nih.gov/pubmed/25515886

pmid: 25515886
[10]
Arambarri J , Hayden J , Elkurdy M , Meyers B , Hamatteh Z S A , Abbassi B , Omar W . Environ. Eng. Res., 2019,24(4):699. doi: 10.4491/eer.2018.383 http://eeer.org/journal/view.php?doi=10.4491/eer.2018.383
[11]
Chen M Y , Ma X T , Chen B , Arsenault R , Karlson P , Simon N , Wang Y . Joule, 2019,3(11):2622. doi: 10.1016/j.joule.2019.09.014 https://linkinghub.elsevier.com/retrieve/pii/S254243511930474X
[12]
Liu C W , Lin J , Cao H B , Zhang Y , Sun Z . Journal of Cleaner Production, 2019,228:801. doi: 10.1016/j.jclepro.2019.04.304 https://linkinghub.elsevier.com/retrieve/pii/S0959652619314015
[13]
林娇(Lin J), 刘春伟(Liu C W), 曹宏斌(Cao H B), 李丽(Li L), 陈仁杰(Chen R J), 孙峙(Sun Z) . 化学进展 (Progress in Chemistry), 2018,30(9):1445. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180424
[14]
Zhang G W , He Y Q , Wang H F , Feng Y , Xie W N , Zhu X N . Journal of Cleaner Production, 2019,231:1418. doi: 10.1016/j.jclepro.2019.04.279 https://linkinghub.elsevier.com/retrieve/pii/S0959652619313708
[15]
Zhang G W , Du Z X , He Y Q , Wang H F , Xie W N , Zhang T . Sustainability, 2019,11:2363. doi: 10.3390/su11082363 https://www.mdpi.com/2071-1050/11/8/2363
[16]
Ren G X , Xiao S W , Xie M Q , Pan B , Chen J , Wang F G , Xia X . Trans. Nonferrous Met. Soc. China 2017,27:450. doi: 10.1016/S1003-6326(17)60051-7 https://linkinghub.elsevier.com/retrieve/pii/S1003632617600517
[17]
Winslow K M , Laux S J , Townsend T G . Resources Conservation and Recycling, 2018,129:263. doi: 10.1016/j.resconrec.2017.11.001 https://linkinghub.elsevier.com/retrieve/pii/S0921344917303774
[18]
Yao Y L , Zhu M Y , Zhao Z , Tong B H , Fan Y Q , Hua Z S . ACS Sustainable Chemistry & Engineering, 2018,6(11):13611.
[19]
Khatri B R , Tipre D R , Dave S R . Journal of Sustainable Metallurgy, 2019,5(2):250. doi: 10.1007/s40831-019-00223-z https://doi.org/10.1007/s40831-019-00223-z
[20]
Swain B . Separation and Purification Technology, 2017,172:388 doi: 10.1016/j.seppur.2016.08.031 https://linkinghub.elsevier.com/retrieve/pii/S1383586616305652
[21]
Ordoñez J , Gago E J , Girard A . Renewable & Sustainable Energy Reviews, 2016,60:195. doi: 10.1016/j.renene.2013.05.011 https://linkinghub.elsevier.com/retrieve/pii/S0960148113002565
[22]
Barik S P , Prabaharan G , Kumar L . Journal of Cleaner Production, 2017,147:37. doi: 10.1016/j.jclepro.2017.01.095 https://linkinghub.elsevier.com/retrieve/pii/S0959652617301099
[23]
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S , Abbott A , Ryder K S , Gaines L , Anderson P . Nature, 2019,575(7781):75. doi: 10.1038/s41586-019-1682-5 https://www.ncbi.nlm.nih.gov/pubmed/31695206

pmid: 31695206
[24]
Zeng X , Li J , Singh N . Critical Reviews in Environmental Science and Technology, 2014,44(10):1129. doi: 10.1080/10643389.2013.763578 c7ca9e19-2af8-4036-ad96-b2d5b1313fe4 http://dx.doi.org/10.1080/10643389.2013.763578
[25]
Li J , Wang G , Xu Z . Waste Management, 2016,52:221. doi: 10.1016/j.wasman.2016.03.011 https://www.ncbi.nlm.nih.gov/pubmed/27021697

pmid: 27021697
[26]
宋秀玲(Song X L), 戴书琪(Dai S Q), 徐永胜(Xu Y S), 谢娅婷(Xie Y T) . 应用化学 (Applied Chemical Industry), 2015,44(4):594.
[27]
谢英豪(Xie Y H), 欧彦楠(Ou Y N), 余海军(Yu H J), 詹园园(Zhan Y Y), 张学梅(Zhang X M), 李长东(Li C D) . 工业安全与环保 (Industrial Safety and Environmental Protection), 2017,43(9):44.
[28]
Bernardes A M , Espinosa D , Tenorio J . Journal of Power Sources, 2004,130(1/2):291. doi: 10.1016/j.jpowsour.2003.12.026 https://linkinghub.elsevier.com/retrieve/pii/S0378775303012230
[29]
Zhang G , He Y , Feng Y , Wang H , Zhang T , Xie W . Journal of Cleaner Production, 2018,199:62. doi: 10.1016/j.jclepro.2018.07.143 https://linkinghub.elsevier.com/retrieve/pii/S0959652618321280
[30]
Wang M M , Tan Q Y , Liu L L , Li J . ACS Sustainable Chemistry & Engineering, 2019,7(15):12799.
[31]
穆德颖(Mu D Y), 马文路(Ma W L), 杨威(Yang W), 戴长松(Dai C S) . 化工环保 (Environmental Protection of Chemical Industry), 2020,1:63.
[32]
Rudnik E , Knapczyk-Korczak J . Metallurgical Research & Technology, 2019,116(6):603.
[33]
Li H , Xing S , Liu Y , Li F , Guo H , Kuang G . ACS Sustainable Chemistry & Engineering, 2017,5(9):8017.
[34]
Almeida J R , Moura M N , Barrada R V , Barbieri E , Carneiro M , Ferreira S . Science of the Total Environment, 2019,685:589. doi: 10.1016/j.scitotenv.2019.05.243 https://www.ncbi.nlm.nih.gov/pubmed/31181535

pmid: 31181535
[35]
Bahaloo-Horeh N , Mousavi S M . Waste Management, 2017,60:666. doi: 10.1016/j.wasman.2016.10.034 https://www.ncbi.nlm.nih.gov/pubmed/27825532

pmid: 27825532
[36]
Chen X P , Guo C X , Ma H R , Li J Z , Zhou T , Cao L . Waste Management, 2018,75:459. doi: 10.1016/j.wasman.2018.01.021 https://www.ncbi.nlm.nih.gov/pubmed/29366798

pmid: 29366798
[37]
Cheng Q . 2018 2nd International Conference on Power and Energy Engineering. IOP Conference Series-Earth and Environmental Science. 1922018.
[38]
He L P , Sun S Y , Song X F , Yu J G . Waste Manag., 2017,64:171. doi: 10.1016/j.wasman.2017.02.011 https://www.ncbi.nlm.nih.gov/pubmed/28325707

pmid: 28325707
[39]
Chen X , Guo C , Ma H , Li J , Zhou T , Cao L . Waste Manag., 2018,75:459. doi: 10.1016/j.wasman.2018.01.021 https://www.ncbi.nlm.nih.gov/pubmed/29366798

pmid: 29366798
[40]
Guan J , Li Y , Guo Y , Su R , Gao G , Song H . ACS Sustainable Chemistry & Engineering, 2016,5(1):1026.
[41]
Chen X , Ma H , Luo C , Zhou T . Journal of Hazardous Materials, 2017,326:77. doi: 10.1016/j.jhazmat.2016.12.021 https://www.ncbi.nlm.nih.gov/pubmed/27987453

pmid: 27987453
[42]
Meng Q , Zhang Y , Dong P . Waste Manag., 2017,64:214. doi: 10.1016/j.wasman.2017.03.017 https://www.ncbi.nlm.nih.gov/pubmed/28325708

pmid: 28325708
[43]
Li L , Bian Y , Zhang X , Yao Y , Xue Q , Fan E . Waste Manag., 2019,85:437. doi: 10.1016/j.wasman.2019.01.012 https://www.ncbi.nlm.nih.gov/pubmed/30803599

pmid: 30803599
[44]
Yu M , Zhang Z , Xue F , Yang B , Guo G , Qiu J . Separation and Purification Technology, 2019,215:398. doi: 10.1016/j.seppur.2019.01.027 https://linkinghub.elsevier.com/retrieve/pii/S1383586618336876
[45]
Gao W , Song J , Cao H , Lin X , Zhang X , Zheng X . Journal of Cleaner Production, 2018,178:833. doi: 10.1016/j.jclepro.2018.01.040 https://linkinghub.elsevier.com/retrieve/pii/S0959652618300519
[46]
He L P , Sun S Y , Mu Y Y , Song X F , Yu J G . ACS Sustainable Chemistry & Engineering, 2017,5(1):714.
[47]
Zhuang L Q , Sun C H , Zhou T , Li H , Dai A Q . Waste Management, 2019,85:175. doi: 10.1016/j.wasman.2018.12.034 https://linkinghub.elsevier.com/retrieve/pii/S0956053X18307761
[48]
Li L , Fan E S , Guan Y B , Zhang X X , Xue Q , Wei L , Wu F , Chen R J . ACS Sustainable Chemistry & Engineering, 2017,5:5224.
[49]
Li L , Bian Y F , Zhang X X , Guan Y B , Fan E S , Wu F . Waste Management, 2018,71:362. doi: 10.1016/j.wasman.2017.10.028 https://www.ncbi.nlm.nih.gov/pubmed/29110940

pmid: 29110940
[50]
Li L , Bian Y F , Zhang X X , Xue Q , Fan E S , Wu F . Journal of Power Sources, 2018,377:70. doi: 10.1016/j.jpowsour.2017.12.006 https://linkinghub.elsevier.com/retrieve/pii/S0378775317316026
[51]
Bahaloo-Horeh N , Mousavi S M , Baniasadi M . Journal of Cleaner Production, 2018,197:1546. doi: 10.1016/j.jclepro.2018.06.299 https://linkinghub.elsevier.com/retrieve/pii/S0959652618319589
[52]
张颢竞(Zhang H J), 程洁红(Cheng J H), 朱诚(Zhu C), 杨嘉(Yang J), 顾铭(Gu M) . 湿法冶金 (Hydrometallurgy of China), 2019,38(101):22.
[53]
Pagnanelli F , Moscardini E , Altimari P , Atia T A , Toro L . Waste Manag., 2016,51:214. doi: 10.1016/j.wasman.2015.11.003 https://www.ncbi.nlm.nih.gov/pubmed/26564258

pmid: 26564258
[54]
Nayl A A , Hamed M M , Rizk S E . Journal of the Taiwan Institute of Chemical Engineers, 2015,55:119. doi: 10.1016/j.jtice.2015.04.006 https://linkinghub.elsevier.com/retrieve/pii/S1876107015001352
[55]
Peng F W , Mu D Y , Li R H , Liu Y L , Ji Y P , Dai C S . RSC Advances, 2019,9(38):21922. doi: 10.1039/C9RA02331C http://xlink.rsc.org/?DOI=C9RA02331C
[56]
Kang J , Senanayake G , Sohn J , Shin S M . Hydrometallurgy, 2010,100:168. doi: 10.1016/j.hydromet.2009.10.010 https://linkinghub.elsevier.com/retrieve/pii/S0304386X09002539
[57]
谌谷春(Shen G C), 唐新村(Tang X C), 王志敏(Wang Z M), 瞿毅(Zhai Y), 陈亮(Chen L), 肖元化(Xiao Y H) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2011,27(10):1987. 35a8bdfe-00eb-4f12-9d53-de6f8ec641eb http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20111016&flag=1
[58]
Peng C , Liu F P , Wang Z L , Wilson B P , Lundstrom M . Journal of Power Sources, 2019,415:179. doi: 10.1016/j.jpowsour.2019.01.072 https://linkinghub.elsevier.com/retrieve/pii/S0378775319300825
[59]
Chen L , Tang X , Zhang Y , Li L , Zeng Z , Zhang Y . Hydrometallurgy, 2011,108:80. doi: 10.1016/j.hydromet.2011.02.010 c8d228d6-72bd-4496-86e8-af9a7f51900d http://dx.doi.org/10.1016/j.hydromet.2011.02.010
[60]
Vishvakarma S , Dhawan N . Journal of Sustainable Metallurgy, 2019,5(2):204. doi: 10.1007/s40831-018-00208-4 https://doi.org/10.1007/s40831-018-00208-4
[61]
Zhang J L , Hu J T , Liu Y B , Jing Q K , Yang C , Chen Y Q , Wang C Y . ACS Sustainable Chemistry & Engineering, 2019,7(6):5626.
[62]
Yu J Z , Wang X , Zhou M Y , Wang Q . Energy & Environmental Science, 2019,12(9):2672.
[63]
Song Y , He L , Zhao Z , Liu X . Separation and Purification Technology, 2019,229:115823. doi: 10.1016/j.seppur.2019.115823 https://linkinghub.elsevier.com/retrieve/pii/S1383586619305362
[64]
Atia T A , Elia G , Elia G , Hahn R , Altimari P , Pagnanelli F . Journal of Energy Chemistry, 2019,35:220. doi: 10.1016/j.jechem.2019.03.022 https://linkinghub.elsevier.com/retrieve/pii/S2095495619302384
[65]
Huang Z , Zhu J , Qiu R J , Ruan J J , Qiu R L . Journal of Cleaner Production, 2019,229:1148. doi: 10.1016/j.jclepro.2019.05.049 https://linkinghub.elsevier.com/retrieve/pii/S0959652619315653
[66]
Gies E . Nature, 2015,526(7575):S100. doi: 10.1038/526S100a https://www.ncbi.nlm.nih.gov/pubmed/26509947

pmid: 26509947
[67]
Sloop S E . US984606, 2016.
[68]
Sloop S E . US9825341, 2017.
[69]
Sloop S E , Crandon L , Allen M , Lerner M M , Zhang H , Sirisaksoontorn W , Gaines L , Kim J , Lee M . Sustainable Materials and Technologies, 2019,2:00113.
[70]
Shi Y , Chen G , Chen Z . Green Chemistry, 2018,20(4):851. doi: 10.1039/C7GC02831H http://xlink.rsc.org/?DOI=C7GC02831H
[71]
Shi Y , Chen G , Liu F , Yue X , Chen Z . ACS Energy Letters, 2018,3(7):1683.
[72]
Li X , Zhang J , Song D , Song J , Zhang L . Journal of Power Sources, 2017,345:78. doi: 10.1016/j.jpowsour.2017.01.118 https://linkinghub.elsevier.com/retrieve/pii/S0378775317301386
[73]
Dos Santos C S , Alves J C , da Silva S P , Evangelista Sita L , da Silva PRC , de Almeida L C . Journal of Hazardous Materials, 2018,362:458. https://www.ncbi.nlm.nih.gov/pubmed/30265977

pmid: 30265977
[74]
Methekar R , Anwani S . Innovations in Infrastructure(Part of Advances in Intelligent Systems and Computing). Springer, 2019,757:233.
[75]
Xu B , Dong P , Duan J G , Wang D , Huang X S , Zhang Y J . Ceramics International, 2019,45(9):11792. doi: 10.1016/j.ceramint.2019.03.057 https://linkinghub.elsevier.com/retrieve/pii/S0272884219305966
[76]
Kim S K , Yang D H , Sohn J S , Jung Y C . Metals and Materials International, 2012,18(2):321. doi: 10.1007/s12540-012-2016-4 54793bb5-b20b-4294-b213-eca670811018 http://link.springer.com/article/10.1007/s12540-012-2016-4
[77]
Yang Y , Xu S , He Y . Waste Manag., 2017,64:219. doi: 10.1016/j.wasman.2017.03.018 https://www.ncbi.nlm.nih.gov/pubmed/28336333

pmid: 28336333
[78]
Park S , Kim D , Ku H , Jo M , Kim S , Song J . Electrochimica Acta, 2019,296:814. doi: 10.1016/j.electacta.2018.11.001 https://linkinghub.elsevier.com/retrieve/pii/S0013468618324654
[79]
Zhang Y N , Zhang Y Y , Zhang Y J , Dong P , Meng Q , Xu M L . Journal of Alloys and Compounds, 2019,783:357. doi: 10.1016/j.jallcom.2018.12.359 https://linkinghub.elsevier.com/retrieve/pii/S0925838818349302
[80]
Chen M Y , Zheng Z F , Wang Q , Zhang Y B , Ma X T , Shen C . Scientific Reports, 2019,9:1654. doi: 10.1038/s41598-018-38238-3 https://www.ncbi.nlm.nih.gov/pubmed/30733518

pmid: 30733518
[81]
Li L , Chen R J , Zhang X X , Wu F , Ge J , Xie M . Chinese Science Bulletin, 2012,57(32):4188. doi: 10.1007/s11434-012-5200-5 http://link.springer.com/10.1007/s11434-012-5200-5
[82]
Yao L , Feng Y , Xi G . RSC Advances, 2015,5(55):44107. doi: 10.1039/C4RA16390G http://xlink.rsc.org/?DOI=C4RA16390G
[83]
Li L , Bian Y , Zhang X , Guan Y , Fan E , Wu F . Waste Management, 2018,71:362. doi: 10.1016/j.wasman.2017.10.028 https://www.ncbi.nlm.nih.gov/pubmed/29110940

pmid: 29110940
[84]
Wang X , Wang X , Zhang R , Wang Y , Shu H . Waste Management, 2018,78:208. doi: 10.1016/j.wasman.2018.05.029 https://www.ncbi.nlm.nih.gov/pubmed/32559906

pmid: 32559906
[85]
Kim D S , Sohn J S , Lee C K , Lee J H , Han K S , Lee Y I . Journal of Power Sources, 2004,132:145. doi: 10.1016/j.jpowsour.2003.09.046 https://linkinghub.elsevier.com/retrieve/pii/S0378775303009820
[86]
赵光金(Zhao G J) . 电源技术 (Chinese Journal of Power Sources), 2020,44(1):139.
[87]
Chen Y M , Liu N N , Jie Y F , Hu F , Li Y , Wilson B P , Xi Y , Lai Y Q , Yang S H . ACS Sustainable Chemistry & Engineering, 2019,7(22):18228.
[88]
Nan J , Han D , Zuo X . Journal of Power Sources, 2005,152:278. doi: 10.1016/j.jpowsour.2005.03.134 https://linkinghub.elsevier.com/retrieve/pii/S0378775305005677
[89]
郭雅峰(Guo Y F), 夏志东(Xia Z D), 毛倩瑾(Mao Q J), 丁 涛(Ding T) . 电子元件与材料 (Electronic Components and Materials), 2007,26(5):36.
[90]
Liu W , Zhong X H , Han J W , Qin W Q , Liu T , Zhao C X , Chang Z Y . ACS Sustainable Chemistry & Engineering, 2019,7(1):1289.
[91]
Zhang G , He Y , Wang H , Feng Y , Xie W , Zhu X . ACS Sustainable Chemistry & Engineering, 2020,8(5):220.
[92]
Zhong X H , Liu W , Han J W , Jia F , Qin W Q , Liu T , Zhao C X . Waste Manag., 2019,89:83. doi: 10.1016/j.wasman.2019.03.068 https://www.ncbi.nlm.nih.gov/pubmed/31079762

pmid: 31079762
[93]
Lain M J . Journal of Power Sources, 2001,97(8):736.
[94]
王楠(Wang N) . CN108365290A, 2018.
[95]
Sun L , Qiu K . Waste Manag., 2012,32(8):1575. doi: 10.1016/j.wasman.2012.03.027 https://www.ncbi.nlm.nih.gov/pubmed/22534072

pmid: 22534072
[96]
Sloop S E . US8846225, 2014.
[97]
Gruetzke M , Kraft V , Weber W , Wendt C , Friesen A , Klamor S . Journal of Supercritical Fluids, 2014,94:216. doi: 10.1016/j.supflu.2014.07.014 502f1387-a100-4a63-8147-67c53de171eb http://dx.doi.org/10.1016/j.supflu.2014.07.014
[98]
Gruetzke M , Kraft V , Hoffmann B , Klamor S , Diekmann J , Kwade A . Journal of Power Sources, 2015,273:83. doi: 10.1016/j.jpowsour.2014.09.064 https://linkinghub.elsevier.com/retrieve/pii/S0378775314014724
[99]
Mönnighoff X , Friesen A , Konersmann B , Horsthemke F , Grützke M , Winter M , Nowak S . Journal of Power Sources, 2017,352:56. doi: 10.1016/j.jpowsour.2017.03.114 https://linkinghub.elsevier.com/retrieve/pii/S0378775317304202
[100]
Liu Y , Mu D , Li R , Ma Q , Zheng R , Dai C . Journal of Physical Chemistry C, 2017,121(8):4181. doi: 10.1021/acs.jpcc.6b12970 https://pubs.acs.org/doi/10.1021/acs.jpcc.6b12970
[101]
Liu Y , Mu D , Zheng R , Dai C . RSC Advances, 2014,4(97):54525. doi: 10.1039/c4ra10530c 8cfcd62f-abf5-4550-9997-b839a068dff7 http://dx.doi.org/10.1039/c4ra10530c
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[10] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[11] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[12] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[13] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[14] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[15] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.