中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1344-1361 DOI: 10.7536/PC200772 Previous Articles   Next Articles

• Review •

Inorganic Solid Electrolytes for the Lithium-Ion Batteries

Jiasheng Lu1, Jiamiao Chen1,2, Tianxian He2, Jingwei Zhao2,3(), Jun Liu4, Yanping Huo1,3   

  1. 1 College of light industry and chemical engineering, Guangdong University of Technology,Guangzhou 510006, China
    2 Guangzhou Tinci Materials Technology Co., Ltd,Guangzhou 510700, China
    3 Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,Shanghai 200032, China
    4 Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology,Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Jingwei Zhao, Jun Liu, Yanping Huo
  • Supported by:
    National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(61671162); National Natural Science Foundation of China(21975053); Guangdong Province Key Field R&D Program Project(2020B0101030005)
Richhtml ( 150 ) PDF ( 2145 ) Cited
Export

EndNote

Ris

BibTeX

Liquid lithium-ion batteries have fatal safety problems such as flammability, explosion, and short-circuit, as well as technical problems such as cruising range anxiety. The development of lithium-ion batteries with good safety performance and high energy density is an urgent need for industrial development. Compared with traditional liquid lithium-ion batteries, all-solid-state batteries have the advantages of safe use and high theoretical specific capacity, so they have been extensively studied and are known as the mainstream technology of next-generation batteries. Among them, the inorganic solid electrolyte plays an important role in the all-solid-state battery, and scientific researchers at home and abroad have conducted a lot of research work on this. This article introduces the latest developments in different types of inorganic solid electrolytes, including oxide solid electrolytes, sulfide solid electrolytes, and halide solid electrolytes. The researches on interface problems, crystal structure, preparation methods, and doping modification of inorganic solid electrolytes are also elaborated. Finally, the problems to be solved in inorganic solid electrolytes in recent years are discussed, and the future research directions are also given.

Contents

1 Introduction

2 Solid oxide electrolytes

2.1 Garnet type solid electrolytes

2.2 Perovskite solid electrolytes

2.3 NASICON type solid electrolytes

2.4 LiPON thin films electrolytes

3 Solid sulfide electrolytes

4 Solid halide electrolytes

5 Conclusion and outlook

Table 1 A summary of different lithium-ion inorganic solid electrolytes
Table 2 Comparison of ionic conductivity and activation energy of different lithium-ion inorganic solid electrolytes
Fig. 1 The crystal structure of a conventional garnet A3B3C2O12[15]. Copyright 2020, Royal Society of Chemistry
Fig. 2 (a) Crystal structure of Li7-3xGaxLa3Zr2O12;(b) Li+ and Ga3+ environment;(c) lithium-ion diffusion pathways in Li7-3xGaxLa3Zr2O12[23]. Copyright 2020, American Chemical Society
Fig. 3 Schematic of Li-metal batteries with garnet LLZT and LLZT-C(C: carbon)[26]. Copyright 2020, American Chemical Society
Fig. 4 First-principle calculations of different interfaces of(a) LLZO/Li,(b) LLZT/Li,(c) Li2CO3/Li,(d) Li2O/Li;(e) Schematic of different wetting behaviors of garnet surfaces with molten Li;(f) Galvanostatic cycling of symmetric Li/LLZT/Li cells[33]
Fig. 5 Crystal structure of tetragonal LLTO[38]. Copyright 2020, American Chemical Society
Fig. 6 (a) The Nyquist plots;(b) cycling performance at 0.1 C;(c) rate performance;(d) galvanostatic charge/discharge curves of Li/PEO/LLTO-41/LFP cell at 65 ℃;(e) Schematic for preparation of LLTO film using tape-casting method[40]. Copyright 2020, John Wiley and Sons
Fig. 7 (a) plot of |Z| vs Frequency for LLTO/LMO, LMO, LLTO, and the mathematical addition of LMO and LLTO;(b) Phase angle vs Frequency plot for LLTO/LMO, LLTO and LMO;(c) Nyquist plot of the interphase from 10 kHz to 5 Hz, and the fitted curve based on the equivalent circuit above;(d) HRTEM image of the interphase between LMO and LLTO[43]. Copyright 2020, John Wiley and Sons
Fig. 8 (a) A comparison of Li+ conductivities along with schematics of the domain microstructures of the LLTO electrolytes: low-T LLTO, high-T LLTO and Li-excess LLTO. (b) Arrhenius plots of the boundary conductivities for low-T LLTO, high-T LLTO and Li-excess LLTO measured over a temperature range of -20 to 70 ℃. (c) Schematics of the domain microstructures of the LLTO electrolytes[44]. Copyright 2020, Royal Society of Chemistry
Fig. 9 The chemical and electrochemical stability of LSTHF5 in water with different pH values[45]. Copyright 2020, John Wiley and Sons
Fig. 10 Rhombohedral R3c structure of NASICON[49]. Copyright 2020, Royal Society of Chemistry
Fig. 11 Illustration of the fabrication of the SSLMB with in-situ forming ionogel interlayers and the schematics of the LATP/Li metal anode interfaces with the ionogel interlayer.[58]. Copyright 2020, American Chemical Society
Fig. 12 Galvanic cycle of(a) Li/LAGP/Li with P(AA-co-MA)Li as the interface layer;(b) LiCl-added P(AA-co-MA)Li interface layer;(c) overpotential versus current density of the interface-modified Li/Interface/LAGP/Interface/Li symmetrical cell.[60]. Copyright 2020, American Chemical Society
Fig. 13 Crystal structure of argyrodite-type Li6PS5X(X = Cl, Br, I) that crystallizes with cubic symmetry in the space group F43m.[81]
Fig. 14 Battery performance of Li4Ti5O12 + LSPS-Cl + C/LSPS-Cl/glass fiber/Li cells incorporating different LSPS-Cl materials annealed at different temperatures[90]. Copyright 2020, Nature
Fig. 15 Photographs(top views) of the LGPS SE pellet surface(A) without and(B) with LiTFSI/PYR13TFSI;(C) Nyquist profiles for the Li/LGPS/Li symmetric cells with and without LiTFSI/PYR13TFSI;(D) time evolution of impedance response of the Li/LGPS/Li cell with LiTFSI/PYR13TFSI at various storage times[93]. Copyright 2020, American Chemical Society
Fig. 16 The crystal structures of LYC(left) and LYB(right) obtained after Rietveld refinement[96]. Copyright 2020, John Wiley and Sons
Fig. 17 The 1D migration pathway in the ab plane[102]. Copyright 2020, American Chemical Society
Fig. 18 Illustration of water-mediated synthesis route for Li3InCl6 SSE and the reversible interconversion between the hydrated Li3InCl6·xH2O and dehydrated Li3InCl6. Green Cl, purple In, blue Li.[106]Copyright 2020, John Wiley and Sons
Fig. 19 Diffusion coefficients from FPMD for Li4Ga4I16,Li7Ga8Br24, Li8Cs4I12, Li20Ge2P4S24, Li40Cl24O8, Li20Cl12O4 and Li56Ta8O48[115]. Copyright 2020, Royal Society of Chemistry
[1]
Chen J M, Xiong J W, Ji S M, Huo Y P, Zhao J W, Liang L. Prog. Chem., 2020, 32(4): 481.
(陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 化学进展, 2020, 32(4): 481.)

doi: 10.7536/PC190627
[2]
Xiang Y X, Li X, Cheng Y Q, Sun X L, Yang Y. Mater. Today, 2020, 36: 139.

doi: 10.1016/j.mattod.2020.01.018
[3]
Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M, Jiang H Q. Nat. Energy, 2018, 3(3): 227.

doi: 10.1038/s41560-018-0104-5
[4]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C
[5]
Tan S J, Zeng X X, Ma Q, Wu X W, Guo Y G. Electrochem. Energy Rev., 2018, 1(2): 113.

doi: 10.1007/s41918-018-0011-2
[6]
Liu Y, Xu B Q, Zhang W, Li L L, Lin Y H, Nan C W. Small, 2020, 16(15): 1902813.
[7]
Gao Z H, Sun H B, Fu L, Ye F L, Zhang Y, Luo W, Huang Y H. Adv. Mater., 2018, 30(17): 1705702.
[8]
Zhang D C, Xu X J, Qin Y L, Ji S M, Huo Y P, Wang Z S, Liu Z B, Shen J D, Liu J. Chem. Eur. J., 2020, 26(8): 1720.

doi: 10.1002/chem.v26.8
[9]
Zhang D C, Xu X J, Ji S M, Wang Z S, Liu Z B, Shen J D, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12(19): 21586.
[10]
Xu X J, Liu Z B, Ji S M, Wang Z S, Ni Z Y, Lv Y, Liu J W, Liu J. Chem. Eng. J., 2019, 359: 765.

doi: 10.1016/j.cej.2018.11.191
[11]
Kim J G, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi M J, Chung H Y, Park S. J. Power Sources, 2015, 282: 299.

doi: 10.1016/j.jpowsour.2015.02.054
[12]
Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H. Ionics, 2018, 24(5): 1271.

doi: 10.1007/s11581-017-2314-4
[13]
Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A. Solid State Ion., 2006, 177(3/4): 257.

doi: 10.1016/j.ssi.2005.10.021
[14]
Thangadurai V, Narayanan S, Pinzaru D. Chem. Soc. Rev., 2014, 43(13): 4714.

doi: 10.1039/c4cs00020j
[15]
Cussen E J. J. Mater. Chem., 2010, 20(25): 5167.

doi: 10.1039/b925553b
[16]
O'Callaghan M P, Lynham D R, Cussen E J, Chen G Z. Chem. Mater., 2006, 18(19): 4681.

doi: 10.1021/cm060992t
[17]
O'Callaghan M P, Cussen E J. Chem. Commun., 2007(20): 2048.
[18]
O’Callaghan M P, Powell A S, Titman J J, Chen G Z, Cussen E J. Chem. Mater., 2008, 20(6): 2360.

doi: 10.1021/cm703677q
[19]
Thangadurai V, Adams S, Weppner W. Chem. Mater., 2004, 16(16): 2998.

doi: 10.1021/cm031176d
[20]
Murugan R, Thangadurai V, Weppner W. Angew. Chem. Int. Ed., 2007, 46(41): 7778.

doi: 10.1002/(ISSN)1521-3773
[21]
Wagner R, Redhammer G J, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G. Chem. Mater., 2016, 28(16): 5943.

doi: 10.1021/acs.chemmater.6b02516
[22]
Rettenwander D, Wagner R, Langer J L, Maier M E, Wilkening M, Amthauer G. Eur. J. Mineral., 2016, 28(3): 619.

doi: 10.1127/ejm/2016/0028-2543
[23]
Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K, Guo X. ACS Appl. Mater. Interfaces, 2017, 9(2): 1542.

doi: 10.1021/acsami.6b13902
[24]
Shin D O, Oh K, Kim K M, Park K Y, Lee B, Lee Y G, Kang K. Sci. Rep., 2015, 5(1): 1.
[25]
Gai J L, Zhao E Q, Ma F R, Sun D Y, Ma X D, Jin Y C, Wu Q L, Cui Y J. J. Eur. Ceram. Soc., 2018, 38(4): 1673.

doi: 10.1016/j.jeurceramsoc.2017.12.002
[26]
Li Y T, Chen X, Dolocan A, Cui Z M, Xin S, Xue L G, Xu H H, Park K, Goodenough J B. J. Am. Chem. Soc., 2018, 140(20): 6448.

doi: 10.1021/jacs.8b03106
[27]
Shen X, Zhang R, Chen X, Cheng X B, Li X Y, Zhang Q. Adv. Energy Mater., 2020, 10(10): 1903645.
[28]
Wang C W, Xie H, Ping W W, Dai J Q, Feng G L, Yao Y G, He S M, Weaver J, Wang H, Gaskell K, Hu L B. Energy Storage Mater., 2019, 17: 234.
[29]
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. Nano Energy, 2019, 61: 119.

doi: 10.1016/j.nanoen.2019.04.058
[30]
Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X X, Guo X. ACS Appl. Mater. Interfaces, 2019, 11(1): 898.

doi: 10.1021/acsami.8b18356
[31]
Yue J P, Yan M, Yin Y X, Guo Y G. Adv. Funct. Mater., 2018, 28(38): 1707533.
[32]
Liu Q, Geng Z, Han C P, Fu Y Z, Li S, He Y B, Kang F Y, Li B H. J. Power Sources, 2018, 389: 120.

doi: 10.1016/j.jpowsour.2018.04.019
[33]
Zheng H P, Wu S P, Tian R, Xu Z M, Zhu H, Duan H N, Liu H Z. Adv. Funct. Mater., 2020, 30(6): 1906189.
[34]
Zhang X Y, Xiang Q, Tang S, Wang A X, Liu X J, Luo J Y. Nano Lett., 2020, 20(4): 2871.

doi: 10.1021/acs.nanolett.0c00693
[35]
Huo H Y, Chen Y, Li R Y, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X X, Sun X L. Energy Environ. Sci., 2020, 13(1): 127.

doi: 10.1039/C9EE01903K
[36]
Lv X J, Meng F L, Wu Y N, Chin. Ceram., 2019, 55(04): 1.
(吕晓娟, 孟繁丽, 吴亚楠. 中国陶瓷, 2019, 55(04): 1.)
[37]
Stramare S, Thangadurai V, Weppner W. Chem. Mater., 2003, 15(21): 3974.

doi: 10.1021/cm0300516
[38]
Yashima M, Itoh M, Inaguma Y, Morii Y. J. Am. Chem. Soc., 2005, 127(10): 3491.

doi: 10.1021/ja0449224
[39]
Sunarso J, Hashim S S, Zhu N, Zhou W. Prog. Energy Combust. Sci., 2017, 61: 57.

doi: 10.1016/j.pecs.2017.03.003
[40]
Jiang Z Y, Wang S Q, Chen X Z, Yang W L, Yao X, Hu X C, Han Q Y, Wang H H. Adv. Mater., 2020, 32(6): 1906221.
[41]
Zhang S S, Zhao H L, Guo J R, Du Z H, Wang J, Swierczek K. Solid State Ion., 2019, 336: 39.

doi: 10.1016/j.ssi.2019.03.015
[42]
Lee S J, Bae J J, Son J T. J. Korean Phys. Soc., 2019, 74(1): 73.

doi: 10.3938/jkps.74.73
[43]
Xu P Y, Rheinheimer W, Shuvo S N, Qi Z M, Levit O, Wang H Y, Ein-Eli Y, Stanciu L A. ChemElectroChem, 2019, 6(17): 4576.

doi: 10.1002/celc.v6.17
[44]
Kwon W J, Kim H, Jung K N, Cho W, Kim S H, Lee J W, Park M S. J. Mater. Chem. A, 2017, 5(13): 6257.

doi: 10.1039/C7TA00196G
[45]
Li Y T, Xu H H, Chien P H, Wu N, Xin S, Xue L G, Park K, Hu Y Y, Goodenough J B. Angew. Chem. Int. Ed., 2018, 57(28): 8587.

doi: 10.1002/anie.v57.28
[46]
Hagman L O, Kierkegaard P, Karvonen P. Acta. Chem. Scand, 1968, 22(6): 1822.

doi: 10.3891/acta.chem.scand.22-1822
[47]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5
[48]
Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M. J. Mater. Sci., 2011, 46(9): 2821.

doi: 10.1007/s10853-011-5302-5
[49]
Song W X, Ji X B, Wu Z P, Zhu Y R, Yang Y C, Chen J, Jing M J, Li F Q, Banks C E. J. Mater. Chem. A, 2014, 2(15): 5358.

doi: 10.1039/c4ta00230j
[50]
Noda Y, Nakano K, Otake M, Kobayashi R, Kotobuki M, Lu L, Nakayama M. APL Mater., 2018, 6(6): 060702.
[51]
Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J. Solid State Ion., 2015, 274: 77.

doi: 10.1016/j.ssi.2015.03.009
[52]
Guo Q P, Han Y, Wang H, Xiong S Z, Li Y J, Liu S K, Xie K. ACS Appl. Mater. Interfaces, 2017, 9(48): 41837.
[53]
Shin Y K, Sengul M Y, Jonayat A S M, Lee W, Gomez E D, Randall C A, van Duin A C T. Phys. Chem. Chem. Phys., 2018, 20(34): 22134.
[54]
He S N, Xu Y L. Solid State Ion., 2019, 343: 115078.
[55]
Ou J H, Li G R, Chen Z W. J. Electrochem. Soc., 2019, 166(10): A1785.

doi: 10.1149/2.0401910jes
[56]
Safanama D, Adams S. J. Power Sources, 2017, 340: 294.

doi: 10.1016/j.jpowsour.2016.11.076
[57]
Wang S H, Li S, Wei B, Lu X. J. Electrochem. Soc., 2020, 167(10): 100528.
[58]
Lin Y K, Liu K, Wu M C, Zhao C, Zhao T S. ACS Appl. Energy Mater., 2020, 3(6): 5712.

doi: 10.1021/acsaem.0c00662
[59]
Cheng Q, Li A J, Li N, Li S, Zangiabadi A, Li T D, Huang W L, Li A C, Jin T W, Song Q Q, Xu W H, Ni N, Zhai H W, Dontigny M, Zaghib K, Chuan X Y, Su D, Yan K, Yang Y. Joule, 2019, 3(6): 1510.

doi: 10.1016/j.joule.2019.03.022
[60]
He L C, Sun Q M, Chen C, Oh J A S, Sun J G, Li M C, Tu W Q, Zhou H H, Zeng K Y, Lu L. ACS Appl. Mater. Interfaces, 2019, 11(23): 20895.
[61]
Zhang X, Wang S, Xue C J, Xin C Z, Lin Y H, Shen Y, Li L L, Nan C W. Adv. Mater., 2019, 31(11): 1806082.
[62]
Siyal S H, Li M J, Li H, Lan J L, Yu Y H, Yang X P. Appl. Surf. Sci., 2019, 494: 1119.

doi: 10.1016/j.apsusc.2019.07.179
[63]
Wang L, Hu S M, Su J M, Huang T, Yu A S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42715.
[64]
Zheng F, Kotobuki M, Song S F, Lai M O, Lu L. J. Power Sources, 2018, 389: 198.

doi: 10.1016/j.jpowsour.2018.04.022
[65]
Yamamoto T, Iwasaki H, Suzuki Y, Sakakura M, Fujii Y, Motoyama M, Iriyama Y. Electrochem. Commun., 2019, 105: 106494.
[66]
Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N. J. Electrochem. Soc., 2008, 155(12): A965.

doi: 10.1149/1.2990717
[67]
Kumar B, Kumar J, Leese R, Fellner J P, Rodrigues S J, Abraham K M. J. Electrochem. Soc., 2010, 157(1): A50.

doi: 10.1149/1.3256129
[68]
Lee J M, Kim S H, Tak Y, Yoon Y S. J. Power Sources, 2006, 163(1): 173.

doi: 10.1016/j.jpowsour.2006.07.036
[69]
West W C, Whitacre J F, Lim J R. J. Power Sources, 2004, 126(1/2): 134.

doi: 10.1016/j.jpowsour.2003.08.030
[70]
Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D. Solid State ion., 2000, 135(1/4): 33.

doi: 10.1016/S0167-2738(00)00327-1
[71]
Wang W W, Yue X Y, Meng J K, Wang J Y, Wang X X, Chen H, Shi D R, Fu J, Zhou Y N, Chen J, Fu Z W. Energy Storage Mater., 2019, 18: 414.
[72]
Lv S, Li M Y, Luo X Y, Cheng J P, Li Z C. J. Alloys Compd., 2020, 815: 151636.
[73]
He T X, Gao Y P, Wu Y P, Yu L, Fan W Z, Zhao J W, Xu S S, Xu J F. CN 110304927 A, 2019.
[74]
Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Energy Storage Mater., 2016, 2: 107.
[75]
Liu L L, Wu F, Li H, Chen L Q, J. Chin. Ceram. Soc., 2019, 47(10):1367.
(刘丽露, 李泓, 陈立泉. 硅酸盐学报, 2019, 47(10):1367.)
[76]
Sun S, Ni M Z, Zan F, Xia Q Y, Xu J, Yue J L, Xia H. J. Chin. Ceram. Soc., 2019, 47(10): 1357.
(孙硕, 倪明珠, 昝峰, 夏求应, 徐璟, 岳继礼, 夏晖. 硅酸盐学报, 2019, 47(10): 1357.)
[77]
Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, Yao X Y. Energy Storage Mater., 2018, 14: 58.
[78]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.

doi: 10.1038/nmat3066
[79]
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. Nat. Energy, 2016, 1(4): 1.

doi: 10.1038/ng0492-1
[80]
Bai Y, Zhao Y B, Li W D, Meng L H, Bai Y P, Chen G R. ACS Sustainable Chem. Eng., 2019, 7(15): 12930.
[81]
Hanghofer I, Gadermaier B, Wilkening H M R. Chem. Mater., 2019, 31(12): 4591.

doi: 10.1021/acs.chemmater.9b01435
[82]
Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M. Angew. Chem. Int. Ed., 2008, 47(4): 755.

doi: 10.1002/(ISSN)1521-3773
[83]
Takada K. J. Power Sources, 2018, 394: 74.

doi: 10.1016/j.jpowsour.2018.05.003
[84]
Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X F, Wu E A, Jo C, Yang H D, Meng Y S. Adv. Energy Mater., 2020, 10(1): 1903253.
[85]
Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z Y, Hartley G O, Marrow J, Bruce P G. Nat. Mater., 2019, 18(10): 1105.

doi: 10.1038/s41563-019-0438-9 pmid: 31358941
[86]
Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Adv. Mater., 2019, 31(44): 1901131.
[87]
Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y F, Ceder G. Nat. Mater., 2015, 14(10): 1026.

doi: 10.1038/nmat4369 pmid: 26280225
[88]
Phani Dathar G K, Balachandran J, Kent P R C, Rondinone A J, Ganesh P. J. Mater. Chem. A, 2017, 5(3): 1153.

doi: 10.1039/C6TA07713G
[89]
Yan M, Wang W P, Yin Y X, Wan L J, Guo Y G. EnergyChem, 2019, 1(1): 100002.
[90]
Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[91]
Yang B, Jiang H R, Zhou Y C, Liang Z J, Zhao T S, Lu Y C. ACS Appl. Mater. Interfaces, 2019, 11(29): 25940.
[92]
Zhang H, Li X H, Hao S M, Zhang X, Lin J P. Electrochimica Acta, 2019, 325: 134943.
[93]
Umeshbabu E, Zheng B Z, Zhu J P, Wang H C, Li Y X, Yang Y. ACS Appl. Mater. Interfaces, 2019, 11(20): 18436.
[94]
Tomita Y, Ohki H, Yamada K, Okuda T. Solid State Ion., 2000, 136: 351.
[95]
Tomita Y, Matsushita H, Kobayashi K, Maeda Y, Yamada K. Solid State Ion., 2008, 179(21/26): 867.

doi: 10.1016/j.ssi.2008.02.012
[96]
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Adv. Mater., 2018, 30(44): 1803075.
[97]
Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Energy Environ. Sci., 2020, 13(5): 1429.

doi: 10.1039/C9EE03828K
[98]
Bohnsack A, Stenzel F, Zajonc A, Balzer G, Wickleder M S, Meyer G. Z. Anorg. Allg. Chem., 1997, 623(7): 1067.

doi: 10.1002/(ISSN)1521-3749
[99]
Bohnsack A, Balzer G, Güdel H U, Wickleder M S, Meyer G. Z. Anorg. Allg. Chem., 1997, 623(9): 1352.

doi: 10.1002/(ISSN)1521-3749
[100]
Li X N, Liang J W, Adair K R, Li J J, Li W H, Zhao F P, Hu Y F, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Chen N, Sun X L. Nano Lett., 2020, 20(6): 4384.

doi: 10.1021/acs.nanolett.0c01156
[101]
Liang J W, Li X N, Wang S, Adair K R, Li W H, Zhao Y, Wang C H, Hu Y F, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Mo Y F, Sun X L. J. Am. Chem. Soc., 2020, 142(15): 7012.

doi: 10.1021/jacs.0c00134
[102]
Park K H, Kaup K, Assoud A, Zhang Q, Wu X H, Nazar L F. ACS Energy Lett., 2020, 5(2): 533.

doi: 10.1021/acsenergylett.9b02599
[103]
Tomita Y, Matsushita H, Yonekura H, Yamauchi Y, Yamada K, Kobayashi K. Solid State Ion., 2004, 174(1/4): 35.

doi: 10.1016/j.ssi.2004.05.025
[104]
Yamada K, Kumano K, Okuda T. Solid State Ion., 2006, 177(19/25): 1691.

doi: 10.1016/j.ssi.2006.06.026
[105]
Tomita Y, Fuji-I A, Ohki H, Yamada K, Okuda T. Chem. Lett., 1998, 27(3): 223.

doi: 10.1246/cl.1998.223
[106]
Li X N, Liang J W, Chen N, Luo J, Adair K R, Wang C H, Banis M N, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Sun X L. Angew. Chem. Int. Ed., 2019, 58(46): 16427.
[107]
Li W H, Liang J W, Li M S, Adair K R, Li X N, Hu Y F, Xiao Q F, Feng R F, Li R Y, Zhang L, Lu S G, Huang H, Zhao S Q, Sham T K, Sun X L. Chem. Mater., 2020, 32(16): 7019.

doi: 10.1021/acs.chemmater.0c02419
[108]
Kanno R, Takeda Y, Yamamoto O, Cros C, Gang W, Hagenmuller P. Solid State Ion., 1986, 20(2): 99.

doi: 10.1016/0167-2738(86)90016-0
[109]
Kanno R, Takeda Y, Takada K, Yamamoto O. J. Electrochem. Soc., 1984, 131(3): 469.

doi: 10.1149/1.2115611
[110]
Zhao Y S, Daemen L L. J. Am. Chem. Soc., 2012, 134(36): 15042.
[111]
Emly A, Kioupakis E, van der Ven A. Chem. Mater., 2013, 25(23): 4663.

doi: 10.1021/cm4016222
[112]
Hood Z D, Wang H, Samuthira Pandian A, Keum J K, Liang C D. J. Am. Chem. Soc., 2016, 138(6): 1768.

doi: 10.1021/jacs.5b11851
[113]
Fang H, Jena P. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(42):11046.
[114]
Yin L H, Yuan H M, Kong L, Lu Z G, Zhao Y S. Chem. Commun., 2020, 56(8): 1251.

doi: 10.1039/C9CC08382K
[115]
Kahle L, Marcolongo A, Marzari N. Energy Environ. Sci., 2020, 13(3): 928.

doi: 10.1039/C9EE02457C
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[4] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[5] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[6] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[7] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[8] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[9] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[10] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[11] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[12] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[13] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[14] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[15] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.