中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1242-1256 DOI: 10.7536/PC171013 Previous Articles   

• Review •

Perspective: Structures and Properties of Liquid Water

Chuang Yao1, Xi Zhang2*, Yongli Huang3, Lei Li1, Zengsheng Ma3, Changqing Sun1,4*   

  1. 1. Key Laboratory of Extraordinary Coordination Bond Engineering and Advanced Materials Technology(EBEAM) Chongqing Municipality, Yangtze Normal University, Chongqing 408100, China;
    2. Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China;
    3. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
    4. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Science Challenge Project(No.TZ2016001), the National Natural Science Foundation of China(No. 11502223), the Hunan Natural Science Foundation of China(No. 2016JJ3119), and the Shenzhen Municipal Human Resources Fund(No. 827000131).
PDF ( 955 ) Cited
Export

EndNote

Ris

BibTeX

The structure of liquid water particularly the number of bonds per water molecule has been a debating issue during 1933~1935 when Bernal, Fowler, and Pauling firstly proposed the scenario of proton "transitional quantum tunneling" in THz frequency at asymmetrical sites between two oxygen ions. Although conventions of the rigid or flexible dipole-dipole interaction, nanophase mixed amorphous structure or homogeneous fluctuating phase models, solute diffusion dynamics or hydration length scale premises have been becoming dominant, mysteries such as floating of ice, regelation of ice (compression melting), slipperiness of ice, fast cooling of warm water, etc. have yet to be resolved. The definition of hydrogen bond needs yet to be certain. In this perspective, we emphasize that it would be more efficient to transit the conventional "dipole-dipole" interaction to "hydrogen bond (O:H-O) asymmetrical, short-range, correlative" interaction, from the "proton translational tunneling" to "hydrogen bond cooperative relaxation". Progress also revealed that the O:H-O bond configuration and the numbers of protons and nonbonding electron lone pairs conserve and that water forms the tetrahedrally-coordinated, strongly correlated, fluctuating single liquid crystal. The O:H nonbond and the H-O bond segmental specific heat disparity derives a quasisolid phase between the liquid and the solid. With tunable boundaries, the quasisolid phase possesses the negative thermal expansion coefficient. Remarkably, molecular undercoordination results in a supersolid phase that is highly polarized, thermally stable, viscoelastic, and lesser dense. Extending hydrogen-bond knowledge to the energy storage-explosion reaction mechanics of energetic materials may further verify the comprehensiveness and universality of the current notion of hydrogen bond cooperativity-nonbonding interaction is ubiquitously important.
Contents
1 Introduction:challenges and opportunities
2 Strategies:manner of thinking
3 Principles:rules of conservation and prohibition
3.1 N number and O:H-O bond configuration conservation
3.2 Molecular orientation and proton tunneling prohibition
3.3 Water single crystal and O:H-O bond potential Path
3.4 O:H-O bond coorpertivity and ice water anomalies
4 Method:spectrometrics and analysis
5 Progress:mysteries resolution
5.1 Quasisolid cooling expansion:ice floating and density oscillation
5.2 Undercoordination supersolidity:slipperiness and skin hydorphobicity
5.3 O:H-O symmetrization:quasisolid phase boundary dispersion and regelation
5.4 Hot water cools faster:O:H-O bond memory and skin supersolidity
6 Conclusion:insight and perspective

CLC Number: 

[1] Sun C Q, Sun Y, The Attribute of Water:Single Notion, Multiple Myths. Springer-Verlag:Heidelberg, 2016.
[2] Ball P. Nature, 2008, 452:291.
[3] Editorial. Science, 2005, 309:78.
[4] Agmon N, Bakker H J, Campen R K, Henchman R H, Pohl P, Roke S, Thämer M, Hassanali A. Chem. Rev., 2016, 116:7642.
[5] Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L. Chem. Rev., 2016, 116:7570.
[6] Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M, Werner J, Bluhm H. Chem. Rev., 2016, 116:7698.
[7] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A, Markland T E. Chem. Rev., 2016, 116:7529.
[8] Cisneros G A, Wikfeldt K T, Ojamäe L, Lu J B, Xu Y, Torabifard H, Bartók A P, Csányi G, Molinero V, Paesani F. Chem. Rev., 2016, 116:7501.
[9] Fransson T, Harada Y, Kosugi N, Besley N A, Winter B, Rehr J J, Pettersson L G M, Nilsson A. Chem. Rev., 2016, 116:7551.
[10] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L, Pettersson L G M. Chem. Rev., 2016, 116:7463.
[11] Perakis F, Marco L D, Shalit A, Tang F, Kann Z R, Kühne T D, Torre R, Bonn M, Nagata Y. Chem. Rev., 2016, 116:7590.
[12] Pettersson L G M, Henchman R H, Nilsson A. Chem. Rev., 2016, 116:7459.
[13] Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B, Loerting T. Rev. Mod. Phys., 2016, 88:011002.
[14] Ball P. H2O:A Biography of Water. Hachette UK, 2015.
[15] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Coord. Chem. Rev., 2015, 285:109.
[16] Zhang X, Sun P, Huang Y L, Ma Z S, Liu X J, Zhou J, Zheng W T, Sun C Q. J. Phys. Chem. B, 2015, 119:5265.
[17] Zhang X, Sun P, Huang Y L, Yan T T, Ma Z S, Liu X J, Zou B, Zhou J, Zheng W T, Sun C Q. Prog. Solid State Chem., 2015, 43:71.
[18] Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A. Science, 2004, 304:995.
[19] Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J. Science, 2004, 306:851.
[20] Head-Gordon T, Johnson M E. Proc. Natl. Acad. Sci. U.S.A., 2006, 103:7973.
[21] Hermann A, Schmidt W G, Schwerdtfeger P. Phys. Rev. Lett., 2008, 100:207403.
[22] Guo J, Bian K, Lin Z R, Jiang Y. J. Chem. Phys., 2016, 145:160901.
[23] Guo J, Lü J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y. Science, 2016, 352:321.
[24] Ball P, Ben-Jacob E. The European Physical Journal Special Topics, 2014, 223:849.
[25] Pauling L. The Nature of the Chemical Bond. 3 ed. Cornell University press:Ithaca, NY, 1960.
[26] Bernal J D, Fowler R H. J. Chem. Phys., 1933, 1:515.
[27] Pauling L. J. Am. Chem. Soc., 1935, 57:2680.
[28] de Grotthuss C. Galvanique. Ann. Chim., 1806.
[29] Hassanali A, Giberti F, Cuny J, Kuhne T D, Parrinello M. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:13723.
[30] Harich S A, Hwang D W H, Yang X, Lin J J, Yang X, Dixon R N. J. Chem. Phys., 2000, 113:10073.
[31] Alduchov O A, Eskridge R E. Improved Magnus' Form Approximation of Saturation Vapor Pressure. 1997.
[32] Jones G, Dole M. J. Am. Chem. Soc., 1929, 51:2950.
[33] Wynne K. J. Phys. Chem. Lett., 2017, 8:6189.
[34] Araque J C, Yadav S K, Shadeck M, Maroncelli M, Margulis C J. J. Phys. Chem. B, 2015, 119:7015.
[35] Thämer M, de Marco L, Ramasesha K, Mandal A, Tokmakoff A. Science, 2015, 350:78.
[36] Branca C, Magazu S, Maisano G, Migliardo P, Tettamanti E. Physica B, 2000, 291:180.
[37] Sellberg J A, Huang C, McQueen T A, Loh N D, Laksmono H, Schlesinger D, Sierra R G, Nordlund D, Hampton C Y, Starodub D, DePonte D P, Beye M, Chen C, Martin A V, Barty A, Wikfeldt K T, Weiss T M, Caronna C, Feldkamp J, Skinner L B, Seibert M M, Messerschmidt M, Williams G J, Boutet S, Pettersson L G, Bogan M J, Nilsson A. Nature, 2014, 510:381.
[38] Ren Z, Ivanova A S, Couchot-Vore D, Garrett-Roe S. J. Phys. Chem. Lett., 2014, 5:1541.
[39] Park S, Odelius M, Gaffney K J. J. Phys. Chem. B, 2009, 113:7825.
[40] Guo J, Li X Z, Peng J B, Wang E G, Jiang Y. Prog. Surf. Sci., 2017, 92:203.
[41] Peng J B, Guo J, Ma R Z, Meng X Z, Jiang Y. J. Phys.:Condens. Matter., 2017, 29:104001.
[42] Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondrá Dcek M, Jelínek P, Wang E G, Jiang Y. Nat. Commun., 2018, 9:122.
[43] Huang Y L, Ma Z S, Zhang X, Zhou G H, Zhou Y, Sun C Q. J. Phys. Chem. B, 2013, 117:13639.
[44] Huang Y L, Zhang X, Ma Z S, Zhou G H, Gong Y Y, Sun C Q. J. Phys. Chem. C, 2015, 119:16962.
[45] Sun C Q. Relaxation of the Chemical Bond. Springer-Verlag:Heidelberg, 2014.
[46] Sun C Q. Progress in Materials Science, 2003, 48:521.
[47] Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y. Nat. Mater., 2014, 13:184.
[48] Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G, Jiang Y. Nature Physics, 2015, 11:235.
[49] Wang Y C, Liu H Y, Lv J, Zhu L, Wang H, Ma Y M. Nat. Commun., 2011, 2:563.
[50] Benoit M, Marx D, Parrinello M. Nature, 1998, 392:258.
[51] Sun C Q, Zhang X, Zheng W T. Chem. Sci., 2012, 3:1455.
[52] Sun C Q, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W T. J. Phys. Chem. Lett., 2013, 4:2565.
[53] Sun C Q, Zhang X, Fu X J, Zheng W T, Kuo J L, Zhou Y C, Shen Z X, Zhou J. J. Phys. Chem. Lett., 2013, 4:3238.
[54] Sun C Q, Chen J S, Gong Y Y, Zhang X, Huang Y L. J. Phys. Chem. B, 2018, 122:1228.
[55] Zhang X, Zhou Y, Gong Y Y, Huang Y L, Sun C Q. Chem. Phys. Lett., 2017, 678:233.
[56] Zeng Q X, Yan T T, Wang K, Gong Y Y, Zhou Y, Huang Y L, Sun C Q, Zou B. Phys.Chem.Chem.Phys., 2016, 18:14046.
[57] Gong Y Y, Zhou Y, Wu H C, Wu D P, Huang Y L, Sun C Q. J. Raman Spectrosc., 2016, 47:1351.
[58] Kumagai T. Prog. Surf. Sci., 2015, 90:239.
[59] Li J C, Kolesnikov A I. J. Mol. Liq., 2002, 100:1.
[60] Everts S. Chemical Engineering News, 2013, 91:28.
[61] Mallamace F, Branca C, Broccio M, Corsaro C, Mou C Y, Chen S H. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:18387.
[62] Zhang X, Huang Y L, Sun P, Liu X J, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2015, 5:13655.
[63] Faraday M. Proc. R. Soc. London, 1859, 10:440.
[64] Thomson J. Proc. R. Soc. London, 1859, 10:151.
[65] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J, Fang H P. Phys. Rev. Lett., 2009, 103:137801.
[66] Zhang X, Liu X J, Zhong Y, Zhou Z F, Huang Y L, Sun C Q. Langmuir, 2016, 32:11321.
[67] Tyndall J. Philos. Trans. R. Soc. London, 1858, 211.
[68] Faraday M. Experimental Researches in Chemical and Physics. Tayler and Francis London, 1859.
[69] Zhang X, Yan T T, Huang Y L, Ma Z S, Liu X J, Zou B, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:24666.
[70] 王彦超(Wang Y C), 孙长庆(Sun C Q), 吴光恒(Wu G H). 科学通报(Chinese Science Bulletin), 2017, 62:1111.
[71] Sun C Q, Sun Y, Ni Y G, Zhang X, Pan J S, Wang X H, Zhou J, Li L T, Zheng W T, Yu S S, Pan L K, Sun Z. J. Phys. Chem. C, 2009, 113:20009.
[72] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zheng W T, Zhou J, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22987.
[73] Wilson K R, Schaller R D, Co D T, Saykally R J, Rude B S, Catalano T, Bozek J D. J. Chem. Phys., 2002, 117:7738.
[74] Winter B, Aziz E F, Hergenhahn U, Faubel M, Hertel I V. J. Chem. Phys., 2007, 126:124504.
[75] James T B. Nature, 1872, 5:185.
[76] Forbes J D. Philos. T. R. Soc. B, 1846, 136:157.
[77] Forbes J D. Philos. T. R. Soc. B, 1846, 136:143.
[78] Yoshimura Y, Stewart S T, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2006, 124:964.
[79] Goncharov A F, Struzhkin V V, Mao H K, Hemley R J. Phys. Rev. Lett., 1999, 83:1998.
[80] Holzapfel W. J. Chem. Phys., 1972, 56:712.
[81] Loubeyre P, LeToullec R, Wolanin E, Hanfland M, Husermann D. Nature, 1999, 397:503.
[82] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K. Science, 1996, 273:218.
[83] Teixeira J. Nature, 1998, 392:232.
[84] Ryzhkin I A. J. Exp. Theor. Phys., 1999, 88:1208.
[85] Stillinger F H, Schweizer K S. J. Phys. Chem., 1983, 87:4281.
[86] Tian L N, Kolesnikov A I, Li J C. J. Chem. Phys., 2012, 137:204507.
[87] Zheng W T, Sun C Q. Energ. Environ. Sci., 2011, 4:627.
[88] Gu M X, Zhou Y C, Pan L K, Sun Z, Wang S Z, Sun C Q. J. Appl. Phys., 2007, 102:083524.
[89] Gu M X, Pan L K, Yeung T C A, Tay B K, Sun C Q. J. Phys. Chem. C, 2007, 111:13606.
[90] Yang C, Zhou Z F, Li J W, Yang X X, Qin W, Jiang R, Guo N G, Wang Y, Sun C Q. Nanoscale, 2012, 4:1304.
[91] Liu K, Cruzan J D, Saykally R J. Science, 1996, 271:929.
[92] Ludwig R. Angew. Chem. Int. Ed., 2001, 40:1808.
[93] Kang D D, Dai J Y, Hou Y, Yuan J M. J. Chem. Phys., 2010, 133:014302.
[94] Green J L, Durben D J, Wolf G H, Angell C A. Science, 1990, 249:649.
[95] Malenkov G. J. Phys. Condens. Matter, 2009, 21:283101.
[96] Sun C Q, Bai H L, Tay B K, Li S, Jiang E Y. J. Phys. Chem. B, 2003, 107:7544.
[97] 孙长庆(Sun C Q), 黄勇力(Huang Y L), 张希(Zhang X). 水规则六十条(60 Rules of Water). 北京:高等教育出版社(Beijing:Higher Education Press), 2018.
[98] Aristotle, Meteorology.http://classics.mit.edu/Aristotle/meteorology.1.i.html:350 B.C.E.
[99] Brownridge J D. Am. J. Phys., 2011, 79:78.
[100] Zhang X, Huang Y L, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Jiang Q, Sun C Q. Phys.Chem.Chem.Phys., 2014, 16:22995.
[101] Huang Y L, Zhang X, Ma Z S, Zhou Y C, Zhou J, Zheng W T, Sun C Q. Sci. Rep., 2013, 3:3005.
[102] Zhou Y, Zhong Y, Gong Y Y, Zhang X, Ma Z S, Huang Y L, Sun C Q. J. Mol. Liq., 2016, 220:865.
[103] Zhou Y, Huang Y L, Ma Z S, Gong Y Y, Zhang X, Sun Y, Sun C Q. J. Mol. Liq., 2016, 221:788.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[4] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[5] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[6] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[7] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[8] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.
[9] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[10] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[11] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[12] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[13] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.
[14] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[15] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.