中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1390-1403 DOI: 10.7536/PC200773 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries

Jinhuo Gao1, Jiafeng Ruan1,2, Yuepeng Pang1, Hao Sun1, Junhe Yang1, Shiyou Zheng1()   

  1. 1 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2 Department of Materials Science, Fudan University,Shanghai 200433, China
  • Received: Revised: Online: Published:
  • Contact: Shiyou Zheng
  • Supported by:
    Shanghai Outstanding Academic Leaders Plan(17XD1403000); Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00015)
Richhtml ( 27 ) PDF ( 897 ) Cited
Export

EndNote

Ris

BibTeX

The rapid development of electric vehicles and large-scale energy storage systems have created a huge demand for high energy density and power density lithium-ion batteries in the market. Because of the advantages such as high voltage(4.7 V vs. Li/Li+), high energy density and power density, abundant resources and low cost, LiNi0.5Mn1.5O4 is considered as one of the most promising lithium-ion battery cathode materials. However, the severe undesirable side reactions between LiNi0.5Mn1.5O4 and electrolyte at elevated temperature leads to worse cycling performance, which limits its commercial application. Therefore, improving the high-temperature performance of LiNi0.5Mn1.5O4 has become one of the research hotspots in the field of lithium-ion batteries. In this paper, the main achievements of recent researches on LiNi0.5Mn1.5O4 materials are reviewed. Starting with the basic characteristics and existing challenges of LiNi0.5Mn1.5O4, strategies such as ion doping, surface coating and surface doping are focused on improving the high-temperature performance. In addition, suggestions and prospects are put forward for subsequent research.

Contents

1 Introduction

2 Structure of LiNi0.5Mn1.5O4 cathode material

3 Synthesis of LiNi0.5Mn1.5O4 cathode material

4 Challenges of LiNi0.5Mn1.5O4 cathode material

5 Modification of LiNi0.5Mn1.5O4 cathode material at high temperature

5.1 Bulk ion doping

5.2 Surface coating

5.3 Surface ion doping

6 Conclusion and outlook

Fig. 1 Illustration of LiNi0.5Mn1.5O4 structure:(a) Fd3m space group;(b) P4332 space group[13]. Copyright 2012 RSC Publishing.
Fig. 2 SEM images(a, b) and cycle performance(c, d) of LiMn1.5Ni0.5O4 and Cr doped LiMn1.5Ni0.5O4[48],(e) Volume change and(f) Li vacancy formation energy in the delithiation process[49]. Copyright 2017 John Wiley and Sons and 2020 Royal Society of Chemistry.
Fig. 3 (a~d) Electrochemical performance of La2O3 coated LiNi0.5Mn1.5O4 at 55 ℃,(e~h) Electrochemical performance of Ta2O5 coated LiNi0.5Mn1.5O4,(i) mechanism diagram of La2O3 coated LiNi0.5Mn1.5O4[75];(j~k) schematic illustration of LiNi0.5Mn1.5O4 coated with HF barriers and scavengers, before and after electrochemical cycling[79]. Copyright 2020 Elsevier and 2018 American Chemical Society.
Fig. 4 (a) Schematic illustration of prepare process,(b,c) mechanism diagram of LiNi0.5Mn1.5O4@LiNbO3[87];(d) mechanism diagram,(e~i) microstructures and element distribution of LiNi0.5Mn1.5O4@Li3V2(PO4)3[99]. Copyright 2017 Royal Society of Chemistry and 2019 American Chemical Society.
Fig. 5 Effects of Zn surface doping on surface structure of LiNi0.5Mn1.5O4[115]. Copyright 2019 American Chemical Society.
Fig. 6 Electrochemical performance of Co surface doped LiNi0.5Mn1.5O4[120]. Copyright 2019 American Chemical Society.
Table 1 High temperature performance of typical research works about LiNi0.5Mn1.5O4 cathode materials in recent years.
Modification Voltage range
(V vs Li/Li+)
Current density Initial capacity
(mAh ·g-1)
Cycle performance ref
Al3+ doping 3.5~5.0 V 1 C 129.9(55 ℃) 86.0%(500 cycles) 32
Cu2+ doping 3.5~5.0 V 5 C 116.0(55 ℃) 98.0%(100 cycles) 36
Ga3+ doping 3.5~4.95V 1 C 121.5(55 ℃) 98.4(50 cycles) 46
Cr3+ doping 3.5~4.9 V 1 C >120(50 ℃) 91.5%(350 cycles) 48
Na+ doping 3.5~4.9 V 5 C 119.7(55 ℃) 81.5%(400 cycles) 52
F- doping 3.5~4.9 V 1 C 122.7(55 ℃) 92.1%(100 cycles) 57
Al3+/Cr3+/F- doping 3.5~5.0 V 10 C 102.7(55 ℃) 95.6%(100 cycles) 59
ZrO2 coating 3.5~4.9V 40 C >120(55 ℃) 76.0%(120 cycles) 68
La2O3 coating 3.5~4.9 V 1 C 106.1(55 ℃) 93.3%(50 cycles) 75
SiO2 coating 3.5~5.0 V 0.5 C >130(55 ℃) 86.0%(100 cycles) 78
Ta2O5 coating 3.5~4.9 V 0.1 C 131.5(55 ℃) 93.0%(100 cycles) 79
GaF3 coating 3.5~5.0 V 1 C 145.3(60 ℃) 82.9%(300 cycles) 83
LiNbO3 coating 3.5~4.9 V 0.5 C >120(60 ℃) 90.0%(100 cycles) 87
Li2ZrO3 coating 3.5~4.95 V 1 C >120(55 ℃) 83.5%(200 cycles) 89
Li2TiO3 coating 3.2~5.0 V 1 C >115(55 ℃) 94.1%(50 cycles) 90
Li4SiO4 coating 3.5~5.0 V 5 C >115(55 ℃) 94.2%(150 cycles) 96
PI coating 3.5~4.9 V 1 C 125.0(55 ℃) 96.0%(50 cycles) 101
La0.7Sr0.3MnO3 coating 3.0~4.9 V 2 C >120(60 ℃) 90.0%(100 cycles) 106
Graphene coating 3.5~4.9 V 2 C 88.7(55 ℃) 94.5%(100 cycles) 108
PANI coating 3.0~4.95 V 0.5 C 112.8(55 ℃) 94.5%(100 cycles) 109
LaFeO3 coating 3.0~5.0 V 1 C >120(55 ℃) 93.3%(100 cycles) 110
Fe surface doping 3.5~5.0 V 1 C 122.0(55 ℃) 86.1%(500 cycles) 117
Co surface doping 3.5~4.95 V 1 C 129.0(55 ℃) 93.0%(200 cycles) 120
[1]
Wang J, Liao H Y, Li B C, Yang G, Wang L, Meng R. Chem. Reag., 2009, 31(11): 948.
(王健, 廖红英, 李冰川, 杨光, 王磊, 孟蓉. 化学试剂, 2009, 31(11): 948.)
[2]
Ruan J F, Pang Y P, Luo S N, Yuan T, Peng C X, Yang J H, Zheng S Y. J. Mater. Chem. A, 2018, 6(42): 20804.
[3]
Ding L. Chin. J. Power Sources, 2015, 39(8): 1780.
(丁玲. 电源技术, 2015, 39(8): 1780.)
[4]
Li M, Wang Y L, Wu X Y, Duan L, Zhang C M, He D N. Prog. Chem., 2017, 29(12): 1526.
(李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 化学进展, 2017, 29(12): 1526.)

doi: 10.7536/PC170732
[5]
Zhang K Q, Ling Z, Wang L Z. Battery Bimon., 2013, 43(4): 235.
(张凯庆, 凌泽, 王力臻. 电池, 2013, 43(4): 235.)
[6]
Chang Q, Wei A J, Li W, Bai X, Zhang L H, He R, Liu Z F. Ceram. Int., 2019, 45(4): 5100.

doi: 10.1016/j.ceramint.2018.11.213
[7]
Ulvestad A, Singer A, Clark J N, Cho H M, Kim J W, Harder R, Maser J, Meng Y S, Shpyrko O G. Science, 2015, 348(6241): 1344.

doi: 10.1126/science.aaa1313 pmid: 26089511
[8]
Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2(1): 1527.
[9]
Li W D, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A. Nat. Commun., 2017, 8(1): 14589.
[10]
Madsen K E, Wade K A, Haasch R T, Buchholz D B, Bassett K L, Nicolau B G, Gewirth A A. ACS Appl. Mater. Interfaces, 2019, 11(43): 39890.
[11]
Gao X W, Deng Y F, Wexler D, Chen G H, Chou S L, Liu H K, Shi Z C, Wang J Z. J. Mater. Chem. A, 2015, 3(1): 404.

doi: 10.1039/C4TA04018J
[12]
Kim J H, Pieczonka N P W, Yang L. ChemPhysChem, 2014, 15(10): 1940.

doi: 10.1002/cphc.v15.10
[13]
Zhang X L, Cheng F Y, Zhang K, Liang Y L, Yang S Q, Liang J, Chen J. RSC Adv., 2012, 2(13): 5669.

doi: 10.1039/c2ra20669b
[14]
Yi T F, Mei J, Zhu Y R. J. Power Sources, 2016, 316: 85.

doi: 10.1016/j.jpowsour.2016.03.070
[15]
Luo Y. Doctoral Dissertation of Harbin University of Industry, 2017.
(罗英. 哈尔滨工业大学博士论文, 2017.).
[16]
Hu E Y, Bak S M, Liu J, Yu X Q, Zhou Y N, Ehrlich S N, Yang X Q, Nam K W. Chem. Mater., 2014, 26(2): 1108.

doi: 10.1021/cm403400y
[17]
Gao Z G, Sun K, Cong L N, Zhang Y H, Zhao Q, Wang R S, Xie H M, Sun L Q, Su Z M. J. Alloys Compd., 2016, 654: 257.

doi: 10.1016/j.jallcom.2015.08.066
[18]
Betz J, Nowak L, Brinkmann J P, Bärmann P, Diehl M, Winter M, Placke T, Schmuch R. Electrochimica Acta, 2019, 325: 134901.
[19]
Lin H B, Zhang Y M, Hu J N, Wang Y T, Xing L D, Xu M Q, Li X P, Li W S. J. Power Sources, 2014, 257: 37.

doi: 10.1016/j.jpowsour.2014.01.089
[20]
Lobo L S, Kumar A R. J. Sol Gel Sci. Technol., 2016, 80(3): 821.

doi: 10.1007/s10971-016-4150-9
[21]
Song Y M, Han J G, Park S, Lee K T, Choi N S. J. Mater. Chem. A, 2014, 2(25): 9506.

doi: 10.1039/C4TA01129E
[22]
Li Y, Wang J, Zhou Z, Yao Q, Wang Z, Zhou H, Deng J. Int. J. Electrochem. Sci., 2019, 2822.
[23]
Zhao E Q, Wei L, Guo Y D, Xu Y J, Yan W C, Sun D Y, Jin Y C. J. Alloys Compd., 2017, 695: 3393.

doi: 10.1016/j.jallcom.2016.12.022
[24]
Mokhtar N, Idris N H, Din M F M. Int. J. Electrochem. Sci., 2018, 13(11): 10113.
[25]
Hallot M, Demortière A, Roussel P, Lethien C. Energy Storage Mater., 2018, 15: 396.
[26]
Xu R, Zhang X F, Chamoun R, Shui J L, Li J C M, Lu J, Amine K, Belharouak I. Nano Energy, 2015, 15: 616.

doi: 10.1016/j.nanoen.2015.05.023
[27]
Shu Y, Xie Y, Yan W C, Meng S, Sun D Y, Jin Y C, He K. J. Power Sources, 2019, 433: 226708.
[28]
Shirazi moghadam Y, Masoudpanah S M, Alamolhoda S, Daneshtalab R. Adv. Powder Technol., 2020, 31(2): 639.

doi: 10.1016/j.apt.2019.11.019
[29]
Liu G Q, Zhang J Y, Zhang X H, Du Y L, Zhang K, Li G C, Yu H, Li C W, Li Z Y, Sun Q, Wen L. J. Alloys Compd., 2017, 725: 580.

doi: 10.1016/j.jallcom.2017.07.202
[30]
Chen Y Y, Sun Y, Huang X J. Comput. Mater. Sci., 2016, 115: 109.

doi: 10.1016/j.commatsci.2016.01.005
[31]
Ulu Okudur F, D'Haen J, Vranken T, de Sloovere D, Verheijen M, Karakulina O M, Abakumov A M, Hadermann J, van Bael M K, Hardy A. RSC Adv., 2018, 8(13): 7287.

doi: 10.1039/C7RA12932G
[32]
Zhong G B, Wang Y Y, Zhao X J, Wang Q S, Yu Y, Chen C H. J. Power Sources, 2012, 216: 368.

doi: 10.1016/j.jpowsour.2012.05.108
[33]
Chen A Y, Kong L L, Shu Y, Yan W C, Wu W, Xu Y J, Gao H T, Jin Y C. RSC Adv., 2019, 9(22): 12656.
[34]
Luo Y, Lu T L, Zhang Y X, Yan L Q, Mao S S, Xie J Y. J. Alloys Compd., 2017, 703: 289.

doi: 10.1016/j.jallcom.2017.01.248
[35]
Yang M C, Xu B, Cheng J H, Pan C J, Hwang B J, Meng Y S. Chem. Mater., 2011, 23(11): 2832.

doi: 10.1021/cm200042z
[36]
Sha O, Qiao Z, Wang S L, Tang Z Y, Wang H, Zhang X H, Xu Q. Mater. Res. Bull., 2013, 48(4): 1606.

doi: 10.1016/j.materresbull.2012.12.071
[37]
Sun H Y, Kong X, Wang B S, Luo T B, Liu G Y. Ceram. Int., 2018, 44(5): 4603.

doi: 10.1016/j.ceramint.2017.11.112
[38]
Shiiba H, Zettsu N, Kida S, Kim D W, Teshima K. J. Mater. Chem. A, 2018, 6(45): 22749.
[39]
Ito A, Li D C, Lee Y, Kobayakawa K, Sato Y. J. Power Sources, 2008, 185(2): 1429.

doi: 10.1016/j.jpowsour.2008.08.087
[40]
Jin Y Z, Lv Y Z, Xue Y, Wu J, Zhang X G, Wang Z B. RSC Adv., 2014, 4(100): 57041.
[41]
Lin M, Wang S H, Gong Z L, Huang X K, Yang Y. J. Electrochem. Soc., 2013, 160(5): A3036.

doi: 10.1149/2.004305jes
[42]
Sun H, Kong X, Wang B, Luo T, Liu G. Int. J. Electrochem. Sci., 2017, 8609.
[43]
Chemelewski K R, Manthiram A. J. Phys. Chem. C, 2013, 117(24): 12465.
[44]
Shin D W, Manthiram A. Electrochem. Commun., 2011, 13(11): 1213.

doi: 10.1016/j.elecom.2011.08.041
[45]
Shin D W, Bridges C A, Huq A, Paranthaman M P, Manthiram A. Chem. Mater., 2012, 24(19): 3720.

doi: 10.1021/cm301844w
[46]
Lan L F, Li S, Li J, Lu L, Lu Y, Huang S, Xu S J, Pan C Y, Zhao F H. Nanoscale Res. Lett., 2018, 13(1): 251.

doi: 10.1186/s11671-018-2666-3
[47]
Kiziltas-Yavuz N, Yavuz M, Indris S, Bramnik N N, Knapp M, Dolotko O, Das B, Ehrenberg H, Bhaskar A. J. Power Sources, 2016, 327: 507.

doi: 10.1016/j.jpowsour.2016.07.047
[48]
Wang J, Nie P, Xu G Y, Jiang J M, Wu Y T, Fu R R, Dou H, Zhang X G. Adv. Funct. Mater., 2018, 28(4): 1704808.
[49]
Li F, Ma J N, Lin J Y, Zhang X H, Yu H, Yang G C. Phys. Chem. Chem. Phys., 2020, 22(7): 3831.

doi: 10.1039/C9CP06545H
[50]
Li S, Lan L F, Lu L, Lu Y, Li S F, Li J, Pan C Y, Zhao F H. AIP Adv., 2019, 9(2): 025210.
[51]
Wu W, Guo J L, Qin X, Bi C B, Wang J F, Wang L, Liang G C. J. Alloys Compd., 2017, 721: 721.

doi: 10.1016/j.jallcom.2017.06.060
[52]
Wang J, Lin W Q, Wu B H, Zhao J B. Electrochimica Acta, 2014, 145: 245.

doi: 10.1016/j.electacta.2014.07.140
[53]
Wang J F, Chen D, Wu W, Wang L, Liang G C. Trans. Nonferrous Met. Soc. China, 2017, 27(10): 2239.

doi: 10.1016/S1003-6326(17)60250-4
[54]
Deng M M, Zou B K, Shao Y, Tang Z F, Chen C H. J. Solid State Electrochem., 2017, 21(6): 1733.

doi: 10.1007/s10008-017-3545-z
[55]
Liang G M, Wu Z B, Didier C, Zhang W C, Cuan J, Li B H, Ko K Y, Hung P Y, Lu C Z, Chen Y Z, Leniec G, Kaczmarek S M, Johannessen B, Thomsen L, Peterson V K, Pang W K, Guo Z P. Angew. Chem. Int. Ed., 2020, 59(26): 10594.
[56]
Oh S W, Park S H, Kim J H, Bae Y C, Sun Y K. J. Power Sources, 2006, 157(1): 464.

doi: 10.1016/j.jpowsour.2005.07.056
[57]
Luo Y, Li H Y, Lu T L, Zhang Y X, Mao S S, Liu Z, Wen W, Xie J Y, Yan L Q. Electrochimica Acta, 2017, 238: 237.

doi: 10.1016/j.electacta.2017.04.043
[58]
Kim W K, Han D W, Ryu W H, Lim S J, Eom J Y, Kwon H S. J. Alloys Compd., 2014, 592: 48.

doi: 10.1016/j.jallcom.2013.12.248
[59]
Sha O, Tang Z Y, Wang S L, Yuan W, Qiao Z, Xu Q, Ma L. Electrochimica Acta, 2012, 77: 250.

doi: 10.1016/j.electacta.2012.05.096
[60]
Li H Y, Luo Y, Xie J Y, Zhang Q S, Yan L Q. J. Alloys Compd., 2015, 639: 346.

doi: 10.1016/j.jallcom.2015.03.114
[61]
Chao M, Luo L, Li K, Zhou B, Shi Q. Int. J. Electrochem. Sci., 2019, 7643.
[62]
Gu T T, Wang J, Tian J H, Zheng X J, Lu K W, Xin Y, Wang H B, Yang R Z. ChemElectroChem, 2019, 6(8): 2224.

doi: 10.1002/celc.v6.8
[63]
Zheng X Y, Liu W J, Qu Q T, Zheng H H, Huang Y H. J. Materiomics, 2019, 5(2): 156.

doi: 10.1016/j.jmat.2019.01.007
[64]
Höweling A, Stoll A, Schmidt D O, Geßwein H, Simon U, Binder J R. J. Electrochem. Soc., 2017, 164(1): A6349.

doi: 10.1149/2.0521701jes
[65]
Liu J H, Sun Z Q, Xie J N, Chen H Y, Wu N N, Wu B R. J. Power Sources, 2013, 240: 95.

doi: 10.1016/j.jpowsour.2013.03.172
[66]
Choi S, Kim M C, Moon S H, Kim H, Park K W. Electrochimica Acta, 2019, 326: 135015.
[67]
Noguchi T, Yamazaki I, Numata T, Shirakata M. J. Power Sources, 2007, 174(2): 359.

doi: 10.1016/j.jpowsour.2007.06.139
[68]
Nisar U, Amin R, Essehli R, Shakoor R A, Kahraman R, Kim D K, Khaleel M A, Belharouak I. J. Power Sources, 2018, 396: 774.

doi: 10.1016/j.jpowsour.2018.06.065
[69]
Lin M, Ben L, Yang S, Hao W, Huang X. Chem. Mater., 2015, 27(1): 292.

doi: 10.1021/cm503972a
[70]
Fang X, Lin F, Nordlund D, Mecklenburg M, Ge M Y, Rong J P, Zhang A Y, Shen C F, Liu Y H, Cao Y, Doeff M M, Zhou C W. Adv. Funct. Mater., 2017, 27(7): 1602873.
[71]
Fey G T K, Muralidharan P, Lu C Z, Cho Y D. Electrochimica Acta, 2006, 51(23): 4850.

doi: 10.1016/j.electacta.2006.01.024
[72]
Yuan W, Zhang H Z, Liu Q, Li G R, Gao X P. Electrochimica Acta, 2014, 135: 199.

doi: 10.1016/j.electacta.2014.04.181
[73]
Shi S J, Tu J P, Zhang Y J, Zhang Y D, Zhao X Y, Wang X L, Gu C D. Electrochimica Acta, 2013, 108: 441.

doi: 10.1016/j.electacta.2013.07.020
[74]
Luo X Y, Liao Y H, Zhu Y M, Li M S, Chen F B, Huang Q M, Li W S. J. Power Sources, 2017, 348: 229.

doi: 10.1016/j.jpowsour.2017.02.085
[75]
Gao J H, Yuan T, Luo S N, Ruan J F, Sun H, Yang J H, Zheng S Y. J. Colloid Interface Sci., 2020, 570: 153.

doi: 10.1016/j.jcis.2020.02.112
[76]
Sun Y K, Lee Y S, Yoshio M, Amine K. Electrochem. Solid-State Lett., 2002, 5(5): A99.

doi: 10.1149/1.1465375
[77]
Arrebola J C, Caballero A, Hernán L, Morales J. J. Power Sources, 2010, 195(13): 4278.

doi: 10.1016/j.jpowsour.2010.01.004
[78]
Fan Y K, Wang J M, Tang Z, He W C, Zhang J Q. Electrochimica Acta, 2007, 52(11): 3870.

doi: 10.1016/j.electacta.2006.10.063
[79]
Ben L, Yu H, Wu Y, Chen B, Zhao W, Huang X. ACS Appl. Energy Mater., 2018, 1(10): 5589.
[80]
Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J H, Chadwick A V, Duda L C, Bruce P G. Nat. Chem., 2016, 8(7): 684.

doi: 10.1038/nchem.2471
[81]
Shi J Y, Yi C W, Kim K. J. Power Sources, 2010, 195(19): 6860.

doi: 10.1016/j.jpowsour.2010.02.063
[82]
Deng S X, Xiao B W, Wang B Q, Li X, Kaliyappan K, Zhao Y, Lushington A, Li R Y, Sham T K, Wang H, Sun X L. Nano Energy, 2017, 38: 19.

doi: 10.1016/j.nanoen.2017.05.007
[83]
Huang Y Y, Zeng X L, Zhou C, Wu P, Tong D G. J. Mater. Sci., 2013, 48(2): 625.

doi: 10.1007/s10853-012-6765-8
[84]
Tiurin O, Solomatin N, Auinat M, Ein-Eli Y. J. Power Sources, 2020, 448: 227373.
[85]
Chu C T, Mondal A, Kosova N V, Lin J Y. Appl. Surf. Sci., 2020, 530: 147169.
[86]
Deng H F, Nie P, Shen L F, Luo H F, Zhang X G. Prog. Chem., 2014, 26(6): 939.
(邓海福, 聂平, 申来法, 罗海峰, 张校刚. 化学进展, 2014, 26(6): 939.)
[87]
Kim H, Byun D, Chang W, Jung H G, Choi W. J. Mater. Chem. A, 2017, 5(47): 25077.
[88]
Gabrielli G, Axmann P, Diemant T, Behm R J, Wohlfahrt-Mehrens M. ChemSusChem, 2016, 9(13): 1670.

doi: 10.1002/cssc.201600278 pmid: 27254109
[89]
Zhang J N, Sun G, Han Y, Yu F D, Qin X J, Shao G J, Wang Z B. Electrochimica Acta, 2020, 343: 136105.
[90]
Deng H F, Nie P, Luo H F, Zhang Y, Wang J, Zhang X G. J. Mater. Chem. A, 2014, 2(43): 18256.
[91]
Zhao J Z, Liu Y R, He Y, Lu K. J. Alloys Compd., 2019, 779: 978.

doi: 10.1016/j.jallcom.2018.11.152
[92]
Wu Q, Xue K, Zhang X H, Xie X S, Wang H Q, Zhang J J, Li Q Y. Ceram. Int., 2019, 45(4): 5072.

doi: 10.1016/j.ceramint.2018.11.209
[93]
Park J S, Meng X B, Elam J W, Hao S Q, Wolverton C, Kim C, Cabana J. Chem. Mater., 2014, 26(10): 3128.

doi: 10.1021/cm500512n
[94]
Cheng F Q, Xin Y L, Huang Y Y, Chen J T, Zhou H H, Zhang X X. J. Power Sources, 2013, 239: 181.

doi: 10.1016/j.jpowsour.2013.03.143
[95]
Deng Y L, He L H, Ren J, Zheng Q J, Xu C G, Lin D M. Mater. Res. Bull., 2018, 100: 333.

doi: 10.1016/j.materresbull.2017.12.050
[96]
Xu Y H, Zhao S X, Deng Y F, Deng H, Nan C W. J. Materiomics, 2016, 2(3): 265.

doi: 10.1016/j.jmat.2016.04.005
[97]
Deng J C, Xu Y L, Li L, Feng T Y, Li L,. J. Mater. Chem. A, 2016, 4(17): 6561.

doi: 10.1039/C6TA02237E
[98]
Lin Y B, Yang Y M, Yu R B, Lai H, Huang Z G. J. Power Sources, 2014, 259: 188.

doi: 10.1016/j.jpowsour.2014.02.093
[99]
Zhao R, Li L, Xu T H, Wang D D, Pan D, He G J, Zhao H L, Bai Y. ACS Appl. Mater. Interfaces, 2019, 11(17): 16233.
[100]
Li L, Zhao R, Pan D, Yi S H, Gao L F, He G J, Zhao H L, Yu C Y, Bai Y. J. Power Sources, 2020, 450: 227677.
[101]
Cho J H, Park J H, Lee M H, Song H K, Lee S Y. Energy Environ. Sci., 2012, 5(5): 7124.

doi: 10.1039/c2ee03389e
[102]
Chong J, Xun S D, Zhang J P, Song X Y, Xie H M, Battaglia V, Wang R S. Chem. Eur. J., 2014, 20(24): 7479.

doi: 10.1002/chem.201304744
[103]
Konishi H, Suzuki K, Taminato S, Kim K, Zheng Y M, Kim S, Lim J, Hirayama M, Son J Y, Cui Y T, Kanno R. J. Power Sources, 2014, 269: 293.

doi: 10.1016/j.jpowsour.2014.05.052
[104]
Chong J, Xun S D, Song X Y, Liu G, Battaglia V S. Nano Energy, 2013, 2(2): 283.

doi: 10.1016/j.nanoen.2012.09.013
[105]
Mou J R, Deng Y L, Song Z C, Zheng Q J, Lam K H, Lin D M. Dalton Trans., 2018, 47(20): 7020.

doi: 10.1039/C8DT00014J
[106]
Zhao G Y, Lin Y B, Zhou T, Lin Y, Huang Y D, Huang Z G. J. Power Sources, 2012, 215: 63.

doi: 10.1016/j.jpowsour.2012.04.090
[107]
Liang G M, Peterson V K, See K W, Guo Z P, Pang W K. J. Mater. Chem. A, 2020, 8(31): 15373.
[108]
Gao C, Liu H P, Bi S F, Fan S S, Meng X H, Li Q Y, Luo C X. J. Materiomics, 2020, 6(4): 712.

doi: 10.1016/j.jmat.2020.05.010
[109]
Dong H Y, Zhang Y J, Zhang S Q, Tang P P, Xiao X L, Ma M Y, Zhang H S, Yin Y H, Wang D, Yang S T. ACS Omega, 2019, 4(1): 185.

doi: 10.1021/acsomega.8b02571
[110]
Mou J R, Deng Y L, He L H, Zheng Q J, Jiang N, Lin D. Electrochimica Acta, 2018, 260: 101.

doi: 10.1016/j.electacta.2017.11.059
[111]
Lee K, Yang G J, Kim H, Kim T, Lee S S, Choi S Y, Choi S, Kim Y. J. Power Sources, 2017, 365: 249.

doi: 10.1016/j.jpowsour.2017.08.080
[112]
Lu J, Zhan C, Wu T P, Wen J G, Lei Y, Kropf A J, Wu H M, Miller D J, Elam J W, Sun Y K, Qiu X P, Amine K. Nat. Commun., 2014, 5(1): 5693.

doi: 10.1038/ncomms6693
[113]
Lim J M, Oh R G, Kim D, Cho W, Cho K, Cho M, Park M S. ChemSusChem, 2016, 9(20): 2967.

doi: 10.1002/cssc.201600821
[114]
Piao J Y, Sun Y G, Duan S Y, Cao A M, Wang X L, Xiao R J, Yu X Q, Gong Y, Gu L, Li Y T, Liu Z J, Peng Z Q, Qiao R M, Yang W L, Yang X Q, Goodenough J B, Wan L J. Chem, 2018, 4(7): 1685.

doi: 10.1016/j.chempr.2018.04.020
[115]
Piao J Y, Gu L, Wei Z X, Ma J M, Wu J P, Yang W L, Gong Y, Sun Y G, Duan S Y, Tao X S, Bin D S, Cao A M, Wan L J. J. Am. Chem. Soc., 2019, 141(12): 4900.

doi: 10.1021/jacs.8b13438
[116]
Patel R L, Jiang Y B, Choudhury A, Liang X H. Sci. Rep., 2016, 6(1): 25293.
[117]
Gao Y, He X Q, Ma L, Wu T P, Park J, Liang X H. Electrochimica Acta, 2020, 340: 135951.
[118]
Xiao B W, Liu H S, Liu J, Sun Q, Wang B Q, Kaliyappan K, Zhao Y, Banis M N, Liu Y L, Li R Y, Sham T K, Botton G A, Cai M, Sun X L. Adv. Mater., 2017, 29(47): 1703764.
[119]
Chen Y Y, Ben L B, Chen B, Zhao W W, Huang X J. Adv. Mater. Interfaces, 2018, 5(12): 1800077.
[120]
Xue Y, Zheng L L, Wang J, Zhou J G, Yu F D, Zhou G J, Wang Z B. ACS Appl. Energy Mater., 2019, 2(4): 2982.

doi: 10.1021/acsaem.9b00564
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[3] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[4] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[5] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[6] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[7] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[8] Wuwei Yan, Yongning Liu, Shaokun Chong, Yaping Zhou, Jianguo Liu, Zhigang Zou. Lithium-Rich Cathode Materials for High Energy-Density Lithium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(2/3): 198-209.
[9] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[10] Chen Ruwen, Tu Xinman, Chen Dezhi. Transition Metal Nitrides for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 416-423.
[11] Liu Xin, Zhao Hailei, Xie Jingying, Lv Pengpeng, Wang Ke, Cui Jiajia. SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 336-348.
[12] Deng Haifu, Nie Ping, Shen Laifa, Luo Haifeng, Zhang Xiaogang. High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2014, 26(06): 939-949.
[13] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.
[14] Zhou Guanwei, He Yushi, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng. Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications [J]. Progress in Chemistry, 2012, 24(0203): 235-245.
[15] Ren Manman, Liu Suwen, Lu Qifang. Vanadium-Based Phosphates as Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(9): 1985-1992.