中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2432-2461 DOI: 10.7536/PC220439 Previous Articles   Next Articles

• Review •

Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials

Zhuke Gong, Hui Xu()   

  1. School of Chemistry and Materials, Heilongjiang University,Harbin 150080, China
  • Received: Revised: Online: Published:
  • Contact: Hui Xu
Richhtml ( 38 ) PDF ( 933 ) Cited
Export

EndNote

Ris

BibTeX

Since the demonstration of organic room temperature phosphorescence (ORTP) from carbazole in 2008, using carbazole unit to construct ORTP materials has become a feasible approach to developing a series of diverse, high-performance, widely applicable and highly representative ORTP material system. This review paper firstly summarizes three strategies for improving phosphorescence performance of ORTP materials, namely H-aggregation, heavy-atom effect and donor-acceptor structure. Then, the recent progress of crystalline carbazole-based ORTP materials is systematically introduced. Based on these three strategies, triplet relaxation is suppressed, spin-orbital coupling is enhanced, singlet-triplet energy gaps are reduced, and intermolecular charge transfer interactions are strengthened. As a result, the triplet excited states are stabilized, and intersystem crossing is accelerated to facilitate phosphorescence, and thereby realizing long-lifetime high-efficiency crystalline carbazole-based ORTP materials. Their applications in the fields of anti-counterfeiting, information security and bioimaging are briefly discussed.

Contents

1 Introduction

2 Mechanism of organic room-temperature phosphorescence (ORTP)

3 Carbazole based ORTP materials

3.1 Crystallization-induced phosphorescence

3.2 H-aggregation induced phosphorescence

3.3 Heavy-atom effect for ORTP

3.4 Donor-acceptor systems for ORTP

3.5 Benz[f]indole isomer doping inducing ORTP

4 Application of carbazole-based ORTP materials

4.1 Bioimaging and photodynamic therapy

4.2 Information safety

5 Conclusion and outlook

Fig. 1 Structural formulas of several representative ORTP materials
Fig. 2 Milestones in developing carbazole-based ORTP materials during recent years. In 2015, Tang Benzhong et al. observed ORTP with a lifetime of 520 ms from crystalline CzBP[35], Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA. In the same year, Huang and An et al. constructed the first H-aggregation stabilized ORTP molecule DPhCzT, with a lifetime of 1.07 s and a phosphorescent quantum yield of 1.25%[36], Copyright 2015, Macmillan. In 2017, An et al. constructed ORTP molecule CPhCz that can be excited with visible light through adjusting the interaction between molecules on the xy plane, with a lifetime of 847.17 ms and a phosphorescent quantum yield of 8.30%[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA. In the same year, Lu et al realized ORTP molecules with high luminescence efficiency by connecting chromophores Cz and heavy atoms with flexible alkylation chain, in which CC6PhBr has an ORTP lifetime of 0.20 s and a phosphorescent quantum yield of 39.47%[38], Copyright 2017, The Royal Society of Chemistry. In 2020, Yang et al. constructed the twisted D-A molecule ChrPh2Cz and achieved ORTP with a lifetime of 511 ms and a phosphorescent quantum yield of 1.50%[39], Copyright 2020, Elsevier B.V. In the same year, An et al prepared CzBBr combining crystalline, D-A structure and heavy-atom effect to achieve a high phosphorescent quantum yield reaching 37.96%[40], Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA. Later, Liu et al proposed that doping carbazole isomer benzo[F]indole can give rise to ORTP from carbazole derivatives, which was demonstrated by the dependence of delayed photoluminescence spectra on CPhCz/CPhBd (15) ratio[41], Copyright 2021, Macmillan
Fig. 3 (a) Fluorescence, delayed fluorescence, phosphorescence and ultralong phosphorescence processes. Exc, Fluo, DF, Phos and Ultralong Phos denote excitation, fluorescence, delayed fluorescence, phosphorescence and ultralong phosphorescence; S0, Sn, Tn and T n * refer to ground, singlet excited, triplet excited and stabilized triplet excited states, respectively. kr,F, knr,F, kr,F and knr,F are radiative and non-radiative transition rate constants of fluorescence and phosphorescence, respectrively[36], Copyright 2015, Macmillan; (b) Molecular orientations within typical J- and H-aggregates. E(k) gives energy dispersion corresponding to the lowest vibronic band in each aggregate. The band curvature at k = 0 is positive or negative in J- or H-aggregates. The red dot indicates the (k = 0) exciton that is optically allowed from the ground state, |G> (black dot). In J-aggregates, neighboring chromophores are oriented in a head-to-tail way, resulting in a negative excitonic coupling and the placement of the optically allowed (k = 0) Frenkel exciton at the bottom of the exciton band. Conversely, in H-aggregates, the nearest neighbor chromophores are oriented in a more side-by-side way, resulting in a positive excitonic coupling and the placement of the k = 0 exciton at the top of the exciton band. The dispersionless (Einstein) phonons of wave vector q derive from the intramolecular vibrations with frequency ω0. Therefore, energy gap between the one- and two-phonon states within the electronic ground state is equal to ?ω0. Arrows indicate emission pathways at T = 0 K, at which emission originates from the lowest-energy exciton. In J-aggregates, 0-0 emission is strongly allowed, leading to superradiance. In contrast, in H-aggregates, rapid intraband relaxation subsequent to absorption populates the lowest-energy k = π exciton, which cannot radiatively couple to |G>, thereby preventing 0-0 emission (assuming no disorder)[57], Copyright 2015, Macmillan; (c) Schematic representation of parallel, oblique, co-planar inclined and non-planar models for H-aggregation[36]; Copyright 2015, Macmillan
Fig. 4 (a) Emission spectra of CzBP、BCzBP and DBCzBP crystals with delay times (td) of 0 and 0.1 ms; (b) Crystal luminescent photographs of CzBP, BCzBP and DBCzBP under ultraviolet ray (UV) irradiation and CzBP without UV irradiation[35], Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA
Fig. 5 (a) Emission spectra of 4-MBACz, 3-MBACz and 2-MBACz crystals with delay times (td) of 0 and 0.1 ms; (b) Crystal structure of 2-MBACz and the torsion angles between MBA and Cz moieties[69], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA; (c) Emission spectra of the crystals for 4-BACz, 3-BACz and 2-BACz with delay times (td) of 0 and 0.1 ms; (d) Comparison on ФP values of 18~23[70], Copyright 2018, The Royal Society of Chemistry
Table 1 Photophysical properties of ORTP materials under crystalline state
Fig. 6 (a) PL spectra and emissive photographs of four different 2CzBZL crystals (crst-A~D) under 365 nm UV irradiation and at room temperature; (b) Single crystal structures of crst-A~D and intermolecular interactions[71], Copyright 2019, Elsevier B.V.
Fig. 7 The calculated free volume region in the single crystal cells of CzPX and CzBX[40], Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA
Fig. 8 Chemical structures of carbazole-based crystallization-induced ORTP materials
Fig. 9 (a) H aggregates in single crystals of DECzT, CzDClT, DCzPhP and DPhCzT; (b) Steady-state photoluminescence (left) and ultralong phosphorescence (right) spectra of DECzT, CzDClT, DCzPhP and DPhCzT. Insets show the corresponding photographs taken before (left) and after (right) excitation; (c) Normalized steady-state photoluminescence spectra and (d) Lifetime decay curves of DPhCzT powder excited at 365 nm in air, argon, and oxygen, respectively; (e) Time dependency of emission intensity for DPhCzT powder at 530 nm. Scan number was 300, with the excitation switching on and off for 2 and 4 s, respectively[36], Copyright 2015, Macmillan
Fig. 10 (a) H-aggregation dimers of PhCz, CPhCz and BPhCz in single crystals; (b) Excitation spectra and photographs of PhCz, CPhCz and BPhCz excited by visible-light LED[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KgaA
Table 2 Photophysical properties of carbazole-based ORTP materials featuring H-aggregation
Fig. 11 H-aggregation structures in (a) mCNPhCz and (b) mCNPhCz crystals[75], Copyright 2019, The Royal Society of Chemistry
Fig. 12 (a) Packing diagram of AI-Cz single crystal; (b) H-aggregates in AI-N-Cz single crystal[78], Copyright 2020, The Royal Society of Chemistry
Fig. 13 (a) Luminescence photographs of CBM, CBM-CH3 and CBM-OCH3 crystals under 365 nm and at different time intervals after UV off; (b) H-aggregation dimers and intermolecular interactions of CBM-OCH3 in single crystals[79], Copyright 2021, The Royal Society of Chemistry
Fig. 14 Chemical structural formula of carbazole-based ORTP materials featuring H-aggregation
Fig. 15 (a) Single-crystal structures of 44[81], Copyright 2012, The Royal Society of Chemistry; (b) Emissive photos of CC4Cl (left), CC4Br (middle), and CC4I (right) under 365 nm UV light; (c) Bimolecular packing of CC2Cl, CC4Cl, CC2Br, CC4Br, CC6Br and CC6Br crystals. Red dashed lines denote the weak interactions[83], Copyright 2016, American Chemical Society
Fig. 16 (a) Fluorescence and phosphorescence quantum yields and average phosphorescence lifetimes of CCnBr and CCnPhBr crystals, as well as emissive photos, under 365 nm; (b) Bimolecular packing modes of CC2Br, CC4Br, CC5Br and CC6Br single crystals. The values are the distances for Br/N, and between two adjacent carbazole groups[38], Copyright 2017, The Royal Society of Chemistry
Fig. 17 Molecular structures of carbazole-based ORTP materials constructed by heavy-atom effect
Table 3 Photophysical properties of carbazole-based ORTP materials with heavy-atom effect
Fig. 18 (a) Molecular geometries of ChrPh2Cz、ChrPh3Cz and ChrPh4Cz single crystals; (b) Photographs of ChrPh2Cz, ChrPh3Cz and ChrPh4Cz crystals taken at different time intervals under (first column) and after (succeeding columns) 365 nm irradiation at 300 K in air[39], Copyright 2020, Elsevier B.V.
Fig. 19 HOMO and LUMO contours of single molecular and dimer DCzB[90], Copyright 2019, Macmillan
Fig. 20 Calculated ground-state molecular structures of CzBP and BPy3Cz[92], Copyright 2021, Elsevier B.V.
Fig. 21 Molecular formula of D-A structured carbazole-based ORTP materials
Table 4 Photophysical properties of D-A structured carbazole-based ORTP materials
Fig. 22 Proposed mechanism of ultralong phosphorescence fromBd doped Cz systems. Left: two charge transfer channels between Bd and Cz during photoexcitation. Type I: electrons from the LUMO of Bd are transferred to the LUMO of Cz. Type II: electrons from the HOMO of Bd are transferred to the HOMO of Cz. Middle: charge-separated states are formed through Cz radical anions diffusing to neighbouring Cz molecules, whereas Bd radical cations are trapped by defects. Right: singlets (for example, S1) and triplets (for example, T1) are generated through charge recombination (CR), accompanied by ISC between them. Phos. = phosphorescence[41], Copyright 2021, Macmillan
Table 5 Photophysical properties of ORTP doping systems
compound λ e x a
(nm)
λ e m b
(nm)
τ P c
(ms)
Φ P d
(%)
k r , P e
(s-1)
k n r , P f
(s-1)
k I S C g
(s-1)
ref
TCz-F(77) Cm 727 7.4 0.12 1.51 1.01×107 96
Lab 515 48.6 0.8 96
TCz-H(78) Cm 128 4.6 1.93 40.08 8.08×106 96
Lab 530 29.9 0.7 96
CNCzBr(80) Lab/Cm Lab 365 550 1.4 98
5∶1 25.6 98
1∶1 38.6 98
1∶5 78.2 98
Cm 162.2 98
CzPyCb(81) Lab/Cm Lab 365 550 39.7 98
3∶1 172.4 98
1∶1 162.3 98
1∶3 170.1 98
Cm 219.4 98
CzPyAm(82) Lab/Cm Lab 365 550 2.3 98
3∶1 14.4 98
1∶1 29.5 98
1∶3 101.1 98
Cm 436.2 98
CzPyCN(83) Lab/Cm Lab 365 550 2.2 98
3∶1 24.5 98
1∶1 351.2 98
1∶3 506.2 98
Cm 744.4 98
CzPyBr(84) Lab/Cm Lab 365 550 8.1 98
3∶1 275.3 98
1∶1 357.5 98
1∶3 788.3 98
Cm 1132.8 98
WAG(85) 300 544 940 5.5 5.9×10-2 1.0 5.6×106 99
320 933 3.5 3.8×10-2 1.0 3.6×106 99
340 923 3.1 3.4×10-2 1.0 3.2×106 99
365 933 3.4 3.6×10-2 1.0 3.5×106 99
380 923 3.3 3.6×10-2 1.0 3.4×106 99
400 922 3.3 3.6×10-2 1.0 3.4×106 99
420 905 3.4 3.8×10-2 1.1 3.5×106 99
440 511 4.1 8.0×10-2 1.9 4.2×106 99
460 88 3.3 3.8×10-2 11.0 3.4×106 99
480 84 8.1 9.6×10-2 10.9 8.3×106 99
Fig. 23 PL photographs of WAG, λex is excitation wavelength[99], Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA
Fig. 24 Chemical structures of ORTP doping systems
Fig. 25 (a) Top-down and Bottom-up synthetic routes of OSNs-T and OSNs-B, respectively; (b) Ultralong phosphorescence and fluorescence imaging of a mouse with the subcutaneous inclusions of OSNs (1.6 × 10-6 mol·L-1)[108], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA; (c) In vivo phosphorescence imaging based on 4-BACz, 3-BACz, 2-BACz NPs[70], Copyright 2019, The Royal Society of Chemistry; (d) In vivo afterglow imaging of m-PBCM in mouse sentinel lymph nodes[109], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA
Fig. 26 Live (green) and dead (red) S. aureus staining with SeDCz NCs after 15min of white light irradiation[119], Copyright 2020, American Chemical Society
Fig.27 Molecular structures of carbazole-based ORTP materials used for biological imaging applications
Fig. 28 Advanced encryption applications based on the differences of ORTP properties. (a) Number “6” pattern marked by m-BrTCz (black) and o-BrTCz (gray) with differentΦP[123], Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA; (b) Color-coded and time-resolved applications based on m-BrTCz. White and yellow emissions were from amorphous and crystalline states[62], Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA; (c) Illustration of the character “8” arranged by Br-AI-Cz with yellow ORTP, Cl-AI-Cz and F-AI-Cz in the crystalline states[125], Copyright 2020, Chinese Chemical Society & SIOC, CAS; (d) Dual-encryption application based on different ORTP properties of visible-light excitable CPhCz, only UV excitable BPhCz and 9AC without ORTP[37], Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA.
Fig. 29 Molecular structures of carbazole-based ORTP materials used for cryptographic applications
[1]
Lewis G N, Kasha M. J. Am. Chem. Soc., 1944, 66(12): 2100.

doi: 10.1021/ja01240a030
[2]
Andrews R E, Shah K M, Wilkinson J M, Gartland A. Bone, 2011, 49(4): 717.

doi: 10.1016/j.bone.2011.06.007
[3]
Collery P, Keppler B, Madoulet C, Desoize B. Crit. Rev. Oncol., 2002, 42(3): 283.

doi: 10.1016/S1040-8428(01)00225-6
[4]
Haley T J, Komesu N, Colvin G, Koste L, Upham H C. J. Pharm. Sci., 1965, 54(4): 643.

doi: 10.1002/jps.2600540435
[5]
Haley T J, Koste L, Komesu N, Efros M, Upham H C. Toxicol. Appl. Pharmacol., 1966, 8(1): 37.

doi: 10.1016/0041-008X(66)90098-6
[6]
Fermi A, Bergamini G, Roy M, Gingras M, Ceroni P. J. Am. Chem. Soc., 2014, 136(17): 6395.

doi: 10.1021/ja501458s
[7]
Li Y, Gecevicius M, Qiu J R. Chem. Soc. Rev., 2016, 45(8): 2090.

doi: 10.1039/C5CS00582E
[8]
Kabe R, Adachi C. Nature, 2017, 550(7676): 384.

doi: 10.1038/nature24010
[9]
Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G. Chem. Soc. Rev., 2014, 43(10): 3259.

doi: 10.1039/C3CS60449G
[10]
Mills I N, Porras J A, Bernhard S. Acc. Chem. Res., 2018, 51(2): 352.

doi: 10.1021/acs.accounts.7b00375
[11]
Mukherjee S, Thilagar P. Chem. Commun., 2015, 51(55): 10988.

doi: 10.1039/C5CC03114A
[12]
Yoshii R, Hirose A, Tanaka K, Chujo Y. J. Am. Chem. Soc., 2014, 136(52): 18131.

doi: 10.1021/ja510985v
[13]
Spitzer D, Bosch Ten J J. Calcif. Tissue Res., 1976, 20(1): 201.

doi: 10.1007/BF02546408
[14]
Togashi D M, Nicodem D E. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2004, 60(13): 3205.

doi: 10.1016/j.saa.2004.03.003
[15]
Zhang G Q, Chen J B, Payne S J, Kooi S E, Demas J N, Fraser C L. J. Am. Chem. Soc., 2007, 129(29): 8942.

doi: 10.1021/ja0720255
[16]
Shen Q J, Pang X, Zhao X R, Gao H Y, Sun H L, Jin W J. CrystEngComm, 2012, 14(15): 5027.

doi: 10.1039/c2ce25338k
[17]
Fateminia S M A, Mao Z, Xu S D, Yang Z Y, Chi Z G, Liu B. Angew. Chem. Int. Ed., 2017, 56(40): 12160.

doi: 10.1002/anie.201705945 pmid: 28771963
[18]
Lee D, Bolton O, Kim B C, Youk J H, Takayama S, Kim J. J. Am. Chem. Soc., 2013, 135(16): 6325.

doi: 10.1021/ja401769g
[19]
Zhang Z Y, Liu Y. Chem. Sci., 2019, 10(33): 7773.

doi: 10.1039/C9SC02633A
[20]
Zhang Y F, Su Y, Wu H W, Wang Z H, Wang C, Zheng Y, Zheng X, Gao L, Zhou Q, Yang Y, Chen X H, Yang C L, Zhao Y L. J. Am. Chem. Soc., 2021, 143(34): 13675.

doi: 10.1021/jacs.1c05213
[21]
Bonesi S M, Crevatín L K, Erra-Balsells R. Photochem. Photobiol. Sci., 2004, 3(4): 381.

doi: 10.1039/b315691e
[22]
Forni A, Lucenti E, Botta C, Cariati E. J. Mater. Chem. C, 2018, 6(17): 4603.

doi: 10.1039/C8TC01007B
[23]
Xie Y J, Ge Y W, Peng Q, Li C G, Li Q Q, Li Z. Adv. Mater., 2017, 29(17): 1606829.

doi: 10.1002/adma.201606829
[24]
Huang Q Q, Mei X F, Xie Z L, Wu D B, Yang S M, Gong W J, Chi Z G, Lin Z H, Ling Q D. J. Mater. Chem. C, 2019, 7(9): 2530.

doi: 10.1039/C8TC06202A
[25]
Mane S K B, Mu Y X, Ubba E, Yang Z Y, Zhao J, Chi Z G. J. Mater. Chem. C, 2019, 7(48): 15219.

doi: 10.1039/C9TC05491J
[26]
Zhang Z Z, Tang L L, Fan X J, Wang Y H, Zhang K, Sun Q K, Zhang H C, Xue S F, Yang W J. J. Mater. Chem. C, 2018, 6(33): 8984.

doi: 10.1039/C8TC03228A
[27]
Zhu R H, Xu W T. Anal., 2008, 133(12): 1722.

doi: 10.1039/b804123g
[28]
Zhao W J, He Z K, Lam J W Y, Peng Q, Ma H L, Shuai Z G, Bai G X, Hao J H, Tang B Z. Chem, 2016, 1(4): 592.

doi: 10.1016/j.chempr.2016.08.010
[29]
He Z K, Zhao W J, Lam J W Y, Peng Q, Ma H L, Liang G D, Shuai Z G, Tang B Z. Nat. Commun., 2017, 8: 416.

doi: 10.1038/s41467-017-00362-5
[30]
Kenry, Chen C J, Liu B. Nat. Commun., 2019, 10: 2111.

doi: 10.1038/s41467-019-10033-2 pmid: 31068598
[31]
Feng G X, Zhang G Q, Ding D. Chem. Soc. Rev., 2020, 49(22): 8179.

doi: 10.1039/D0CS00671H
[32]
Xu D F, Cheng D D, Wang Y, Zhou H K, Liu X L, Han A X, Zhang C. Dyes Pigments, 2020, 172: 107786.

doi: 10.1016/j.dyepig.2019.107786
[33]
Li K X, Zhao L F, Gong Y Y, Yuan W Z, Zhang Y M. Sci. China Chem., 2017, 60(6): 806.

doi: 10.1007/s11426-016-0460-8
[34]
Gayathri P, Karthikeyan S, Pannipara M, Al-Sehemi A G, Moon D, Anthony S P. CrystEngComm, 2019, 21(43): 6604.

doi: 10.1039/C9CE01227C
[35]
Gong Y Y, Chen G, Peng Q, Yuan W Z, Xie Y J, Li S H, Zhang Y M, Tang B Z. Adv. Mater., 2015, 27(40): 6195.

doi: 10.1002/adma.201502442
[36]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259
[37]
Cai S Z, Shi H F, Li J W, Gu L, Ni Y, Cheng Z C, Wang S, Xiong W W, Li L, An Z F, Huang W. Adv. Mater., 2017, 29(35): 1701244.

doi: 10.1002/adma.201701244
[38]
Xue P C, Wang P P, Chen P, Yao B Q, Gong P, Sun J B, Zhang Z Q, Lu R. Chem. Sci., 2017, 8(9): 6060.

doi: 10.1039/C5SC03739E
[39]
Zheng K L, Yang X M, Ni F, Chen Z X, Zhong C, Yang C L. Chem. Eng. J., 2021, 408: 127309.

doi: 10.1016/j.cej.2020.127309
[40]
Yin Z, Gu M X, Ma H L, Jiang X Y, Zhi J H, Wang Y F, Yang H F, Zhu W G, An Z F. Angew. Chem. Int. Ed., 2021, 60(4): 2058.

doi: 10.1002/anie.202011830
[41]
Chen C J, Chi Z G, Chong K C, Batsanov A S, Yang Z, Mao Z, Yang Z Y, Liu B. Nat. Mater., 2021, 20(2): 175.

doi: 10.1038/s41563-020-0797-2
[42]
Köhler A, Wilson J S, Friend R H. Adv. Eng. Mater., 2002, 4(7): 453.

doi: 10.1002/1527-2648(20020717)4:7【-逻*辑*与-】#x00026;lt;453::AID-ADEM453【-逻*辑*与-】#x00026;gt;3.0.CO;2-G
[43]
El-Sayed M A. J. Chem. Phys., 1963, 38(12): 2834.

doi: 10.1063/1.1733610
[44]
Hayduk M, Riebe S, Voskuhl J. Chem. Eur. J., 2018, 24(47): 12221.

doi: 10.1002/chem.201800521
[45]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y
[46]
Schulman E M, Parker R T. J. Phys. Chem., 1977, 81(20): 1932.

doi: 10.1021/j100535a010
[47]
Jelley E E. Nature, 1937, 139(3519): 631.
[48]
Herz A H. Adv. Colloid Interface Sci., 1977, 8(4): 237.

doi: 10.1016/0001-8686(77)80011-0
[49]
Kasha M, Rawls H R, El-Bayoumi M A. Pure Appl. Chem., 1965, 11(3/4): 371.

doi: 10.1351/pac196511030371
[50]
Ghosh S, Li X Q, Stepanenko V, Würthner F. Chem. Eur. J., 2008, 14(36): 11343.

doi: 10.1002/chem.200801454
[51]
Zhao Q Q, Lai H J, Chen H, Li H, He F. J. Mater. Chem. A, 2021, 9(2): 1119.

doi: 10.1039/D0TA11146E
[52]
Liu G F, Sheng J H, Wu H W, Yang C L, Yang G B, Li Y X, Ganguly R, Zhu L L, Zhao Y L. J. Am. Chem. Soc., 2018, 140(20): 6467.

doi: 10.1021/jacs.8b03309
[53]
Gao J, Zhao Y Y, You X X, Geng Y, Shan G G, Su Z M, Gao Y. J. Mater. Chem. C, 2022, 10(14): 5425.

doi: 10.1039/D2TC00518B
[54]
Gao H, Ma X. Aggregate, 2021, 2(4): e38.
[55]
Baroncini M, Bergamini G, Ceroni P. Chem. Commun., 2017, 53(13): 2081.

doi: 10.1039/C6CC09288H
[56]
Li J Y, Wang G M, Chen X F, Li X, Wu M J, Yuan S, Zou Y L, Wang X P, Zhang K K. Chem - A Eur. J., 2022, 28(35): e202283561.
[57]
Spano F C, Silva C. Annu. Rev. Phys. Chem., 2014, 65: 477.

doi: 10.1146/annurev-physchem-040513-103639
[58]
El-Sayed M A. J. Chem. Phys., 1963, 38(12): 2834.

doi: 10.1063/1.1733610
[59]
Yuan J, Chen R F, Tang X X, Tao Y, Xu S, Jin L, Chen C L, Zhou X H, Zheng C, Huang W. Chem. Sci., 2019, 10(19): 5031.

doi: 10.1039/c8sc05198d pmid: 31183053
[60]
Schmidt K, Brovelli S, Coropceanu V, Beljonne D, Cornil J, Bazzini C, Caronna T, Tubino R, Meinardi F, Shuai Z G, Brédas J L. J. Phys. Chem. A, 2007, 111(42): 10490.

pmid: 17910425
[61]
Brédas J L, Beljonne D, Coropceanu V, Cornil J. Chem. Rev., 2004, 104(11): 4971.

doi: 10.1021/cr040084k
[62]
Yang Z Y, Mao Z, Zhang X P, Ou D P, Mu Y X, Zhang Y, Zhao C Y, Liu S W, Chi Z G, Xu J R, Wu Y C, Lu P Y, Lien A L, Bryce M R. Angew. Chem. Int. Ed., 2016, 55(6): 2181.

doi: 10.1002/anie.201509224
[63]
Zhang H Y, Guo Y R, Wu Z B, Wang Y N, Sun Y, Feng X, Wang H Y, Zhao G J. J. Lumin., 2021, 232: 117864.

doi: 10.1016/j.jlumin.2020.117864
[64]
Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev., 2016, 116(4): 2478.

doi: 10.1021/acs.chemrev.5b00484
[65]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.201402532
[66]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687
[67]
Im Y, Kim M, Cho Y J, Seo J A, Yook K S, Lee J Y. Chem. Mater., 2017, 29(5): 1946.

doi: 10.1021/acs.chemmater.6b05324
[68]
Penfold T J, Dias F B, Monkman A P. Chem. Commun., 2018, 54(32): 3926.

doi: 10.1039/C7CC09612G
[69]
Zhang T T, Wang X, An Z F, Fang Z W, Zhang Y M, Yuan W Z. ChemPhysChem, 2018, 19(18): 2389.

doi: 10.1002/cphc.201800310
[70]
Zhang T T, Gao H Q, Lv A Q, Wang Z Y, Gong Y Y, Ding D, Ma H L, Zhang Y M, Yuan W Z. J. Mater. Chem. C, 2019, 7(29): 9095.

doi: 10.1039/C9TC02879J
[71]
He Z H, Li W B, Chen G, Zhang Y M, Yuan W Z. Chin. Chem. Lett., 2019, 30(4): 933.

doi: 10.1016/j.cclet.2019.03.015
[72]
Xu S, Chen R F, Zheng C, Huang W. Adv. Mater., 2016, 28(45): 9920.

doi: 10.1002/adma.201602604
[73]
Riebe S, Vallet C, van der Vight F, Gonzalez-Abradelo D, Wöelper C, Strassert C A, Jansen G, Knauer S, Voskuhl J. Chem. Eur. J., 2017, 23(55): 13660.

doi: 10.1002/chem.201701867
[74]
Gao W C, Su Y, Wang Z H, Zhang Y F, Zhang D, Jia P, Yang C L, Li Y B, Ganguly R, Zhao Y L. ACS Appl. Mater. Interfaces, 2019, 11(50): 47162.

doi: 10.1021/acsami.9b17554
[75]
Yuan J, Wang S, Ji Y, Chen R F, Zhu Q, Wang Y R, Zheng C, Tao Y, Fan Q L, Huang W. Mater. Horiz., 2019, 6(6): 1259.

doi: 10.1039/c9mh00220k
[76]
Huang T Y, Jiang W, Duan L. J. Mater. Chem. C, 2018, 6(21): 5577.

doi: 10.1039/C8TC01139G
[77]
Zhang D D, Song X Z, Cai M H, Kaji H, Duan L. Adv. Mater., 2018, 30(7): 1705406.

doi: 10.1002/adma.201705406
[78]
Zhang L, Li M, Gao Q Y, Chen C F. Chem. Commun., 2020, 56(31): 4296.

doi: 10.1039/C9CC09636A
[79]
Fang B, Lai L M, Fan M Y, Yin M Z. J. Mater. Chem. C, 2021, 9(34): 11172.

doi: 10.1039/D1TC02169A
[80]
Baba M. J. Phys. Chem. A, 2011, 115(34): 9514.

doi: 10.1021/jp111892y
[81]
Gao H Y, Shen Q J, Zhao X R, Yan X Q, Pang X, Jin W J. J. Mater. Chem., 2012, 22(12): 5336.

doi: 10.1039/c2jm16257a
[82]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984 pmid: 21336325
[83]
Sun X X, Zhang B C, Li X Y, Trindle C O, Zhang G Q. J. Phys. Chem. A, 2016, 120(29): 5791.

doi: 10.1021/acs.jpca.6b03867
[84]
Sun X F, Gong H H, Zhang Y X, Tian Y X, Zhang H X, Bai F Q, Wang J, Zhong K L, Kong C P. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 255: 119642.

doi: 10.1016/j.saa.2021.119642
[85]
Shi H F, Song L L, Ma H L, Sun C, Huang K W, Lv A Q, Ye W P, Wang H, Cai S Z, Yao W, Zhang Y J, Zheng R L, An Z F, Huang W. J. Phys. Chem. Lett., 2019, 10(3): 595.
[86]
Zhang Y Y, Shi Y R, Jia X B, Zhai H S, Liu Y, Wei H L, Liu Y F. Synth. Met., 2020, 265: 116377.

doi: 10.1016/j.synthmet.2020.116377
[87]
Zhang F Y, Xu Y Y, Zhang W T, Shen W, Li M, He R X. J. Phys. Chem. A, 2017, 121(3): 690.

doi: 10.1021/acs.jpca.6b10754
[88]
Xia Y F, Du Y Q, Xiang Q, Humphrey M G. New J. Chem., 2021, 45(11): 4930.

doi: 10.1039/D0NJ05713D
[89]
Serevičius T, Bučiūnas T, Bucevičius J, Dodonova J, Tumkevičius S, Kazlauskas K, Juršėnas S. J. Mater. Chem. C, 2018, 6(41): 11128.

doi: 10.1039/C8TC02554A
[90]
Jin J B, Jiang H, Yang Q Q, Tang L L, Tao Y, Li Y Y, Chen R F, Zheng C, Fan Q L, Zhang K Y, Zhao Q, Huang W. Nat. Commun., 2020, 11: 842.

doi: 10.1038/s41467-020-14669-3
[91]
Dias F B, Bourdakos K N, Jankus V, Moss K C, Kamtekar K T, Bhalla V, Santos J, Bryce M R, Monkman A P. Adv. Mater., 2013, 25(27): 3707.

doi: 10.1002/adma.201300753
[92]
Wang Y N, Guo Y R, Wu Z B, Zhang H Y, Wang C, Zhao G J. J. Mol. Liq., 2021, 326.
[93]
Mao Z, Yang Z, Xu C, Xie Z L, Jiang L, Gu F L, Zhao J, Zhang Y, Aldred M P, Chi Z G. Chem. Sci., 2019, 10(31): 7352.

doi: 10.1039/C9SC02282A
[94]
Bi X Q, Shi Y G, Peng T, Yue S W, Wang F, Zheng L Y, Cao Q E. Adv. Funct. Mater., 2021, 31(24): 2101312.

doi: 10.1002/adfm.202101312
[95]
Wang Y H, Zhang Z Z, Liu L X, Yuan S, Ma J, Liu D F, Xue S F, Sun Q K, Yang W J. J. Mater. Chem. C, 2019, 7(31): 9671.

doi: 10.1039/C9TC03444G
[96]
Feng H T, Zeng J J, Yin P A, Wang X D, Peng Q, Zhao Z J, Lam J W Y, Tang B Z. Nat. Commun., 2020, 11: 2617.

doi: 10.1038/s41467-020-16412-4
[97]
Xiong Y, Zhao Z, Zhao W J, Ma H L, Peng Q, He Z K, Zhang X P, Chen Y C, He X W, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2018, 57(27): 7997.

doi: 10.1002/anie.201800834 pmid: 29736955
[98]
Qian C, Ma Z M, Yang B X, Li X J, Sun J Y, Li Z W, Jiang H, Chen M X, Jia X R, Ma Z Y. J. Mater. Chem. C, 2021, 9(40): 14294.

doi: 10.1039/D1TC03020E
[99]
Wang Y G, Sun Q K, Yue L T, Ma J, Yuan S, Liu D F, Zhang H C, Xue S F, Yang W J. Adv. Optical Mater., 2021, 9(21): 2101075.

doi: 10.1002/adom.202101075
[100]
Rao J H, Dragulescu-Andrasi A, Yao H Q. Curr. Opin. Biotechnol., 2007, 18(1): 17.

doi: 10.1016/j.copbio.2007.01.003
[101]
Gross S, Gammon S T, Moss B L, Rauch D, Harding J, Heinecke J W, Ratner L, Piwnica-Worms D. Nat. Med., 2009, 15(4): 455.
[102]
Jones K A, Porterfield W B, Rathbun C M, McCutcheon D C, Paley M A, Prescher J A. J. Am. Chem. Soc., 2017, 139(6): 2351.

doi: 10.1021/jacs.6b11737
[103]
Abdukayum A, Chen J T, Zhao Q, Yan X P. J. Am. Chem. Soc., 2013, 135(38): 14125.

doi: 10.1021/ja404243v
[104]
Li Y, Zhou S F, Li Y Y, Sharafudeen K, Ma Z J, Dong G P, Peng M Y, Qiu J R. J. Mater. Chem. C, 2014, 2(15): 2657.

doi: 10.1039/c4tc00014e
[105]
Li Z J, Zhang Y W, Wu X, Huang L, Li D S, Fan W, Han G. J. Am. Chem. Soc., 2015, 137(16): 5304.

doi: 10.1021/jacs.5b00872
[106]
Wu B Y, Wang H F, Chen J T, Yan X P. J. Am. Chem. Soc., 2011, 133(4): 686.

doi: 10.1021/ja108788p
[107]
Maldiney T, Bessière A, Seguin J, Teston E, Sharma S K, Viana B, Bos A J J, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat. Mater., 2014, 13(4): 418.

pmid: 24651431
[108]
Zhen X, Tao Y, An Z F, Chen P, Xu C J, Chen R F, Huang W, Pu K Y. Adv. Mater., 2017, 29(33): 1606665.

doi: 10.1002/adma.201606665
[109]
He Z H, Gao H Q, Zhang S T, Zheng S Y, Wang Y Z, Zhao Z H, Ding D, Yang B, Zhang Y M, Yuan W Z. Adv. Mater., 2019, 31(18): 1807222.

doi: 10.1002/adma.201807222
[110]
Yan X F, Niu G, Lin J, Jin A J, Hu H, Tang Y X, Zhang Y J, Wu A G, Lu J, Zhang S L, Huang P, Shen B Z, Chen X Y. Biomaterials, 2015, 42: 94.

doi: 10.1016/j.biomaterials.2014.11.040
[111]
Li T W, Li C Y, Ruan Z, Xu P P, Yang X H, Yuan P, Wang Q B, Yan L F. ACS Nano, 2019, 13(3): 3691.

doi: 10.1021/acsnano.9b00452
[112]
Li X S, Bai H T, Yang Y C, Yoon J, Wang S, Zhang X. Adv. Mater., 2019, 31(5): 1805092.
[113]
Maisch T, Baier J, Franz B, Maier M, Landthaler M, Szeimies R M, Bäumler W. PNAS, 2007, 104(17): 7223.

pmid: 17431036
[114]
Hola K, Zhang Y, Wang Y, Giannelis E P, Zboril R, Rogach A L. Nano Today, 2014, 9(5): 590.

doi: 10.1016/j.nantod.2014.09.004
[115]
Francés-Soriano L, Zakharko M A, González-Béjar M, Panchenko P A, Herranz-Pérez V, Pritmov D A, Grin M A, Mironov A F, García-Verdugo J M, Fedorova O A, Pérez-Prieto J. Chem. Mater., 2018, 30(11): 3677.

doi: 10.1021/acs.chemmater.8b00276
[116]
Zhang K Y, Yu Q, Wei H J, Liu S J, Zhao Q, Huang W. Chem. Rev., 2018, 118(4): 1770.

doi: 10.1021/acs.chemrev.7b00425
[117]
Lv W, Zhang Z, Zhang K Y, Yang H R, Liu S J, Xu A Q, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55(34): 9947.

doi: 10.1002/anie.201604130
[118]
Zhen X, Qu R, Chen W Z, Wu W, Jiang X Q. Biomater. Sci., 2021, 9(2): 285.

doi: 10.1039/D0BM00819B
[119]
Xu L T, Zhou K, Ma H L, Lv A Q, Pei D D, Li G P, Zhang Y F, An Z F, Li A, He G. ACS Appl. Mater. Interfaces, 2020, 12(16): 18385.

doi: 10.1021/acsami.0c04005
[120]
Zhou Y, Han S T, Chen X, Wang F, Tang Y B, Roy V A L. Nat. Commun., 2014, 5: 4720.

doi: 10.1038/ncomms5720 pmid: 25144762
[121]
Xue J C, Zhou Z K, Wei Z Q, Su R B, Lai J, Li J T, Li C, Zhang T W, Wang X H. Nat. Commun., 2015, 6: 8906.

doi: 10.1038/ncomms9906
[122]
Da Veiga A, Eloff J H P. Inf. Syst. Manag., 2007, 24(4): 361.

doi: 10.1080/10580530701586136
[123]
Cai S Z, Shi H F, Tian D, Ma H L, Cheng Z C, Wu Q, Gu M X, Huang L, An Z F, Peng Q, Huang W. Adv. Funct. Mater., 2018, 28(9): 1870060.

doi: 10.1002/adfm.201870060
[124]
Zhang L, Li M, Gao Q Y, Chen C F. Chin. J. Org. Chem., 2020, 40(2): 516.

doi: 10.6023/cjoc201909012
(张亮, 李猛, 高庆宇, 陈传峰. 有机化学, 2020, 40(2): 516.).

doi: 10.6023/cjoc201909012
[1] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[2] Su Yumiao, Lin Haijuan, Li Wenmu. The Applications of Carbazole and Carbazole-Related Compounds in Blue Emitting Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2015, 27(10): 1384-1399.
[3] Lin Qi Wei Taibao Yao Hong Zhang Youming. Azo-Heterocycle Based Anion Receptors [J]. Progress in Chemistry, 2009, 21(6): 1207-1216.
[4]

Chen Suting|You Qidong*

. Anticancer Activity of Indolocarbazoles [J]. Progress in Chemistry, 2008, 20(0203): 368-374.