中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1554-1575 DOI: 10.7536/PC220346 Previous Articles   Next Articles

• Review •

From Single Molecule to Molecular Aggregation Science

Shuhui Li1, Qianqian Li1(), Zhen Li1,2()   

  1. 1. Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
    2. Institute of Molecular Aggregation Science, Tianjin University,Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: Qianqian Li, Zhen Li
  • Supported by:
    National Natural Science Foundation of China(22122504); National Natural Science Foundation of China(51973162); National Natural Science Foundation of China(21734007)
Richhtml ( 172 ) PDF ( 2523 ) Cited
Export

EndNote

Ris

BibTeX

The opto-electronic properties of organic materials are not only dependent on the molecular structures, but also the aggregated states. In many cases, the cooperativity of intermolecular interactions can generate the new functions beyond those as single molecules. Thus, our recognition should not only limit on the level of single molecule, but pay much attention to molecular aggregates with the Molecular Uniting Set Identified Characteristic (MUSIC). Among them, organic room temperature phosphorescence (RTP) as the unique emission of organic molecules at aggregate state, demonstrating the high sensitivity and responsiveness to their aggregation behaviors in most cases. Thus, in this review, RTP property was selected as the typical optoelectronic property of molecular aggregates, and the formation processes and crucial factors have been systematical investigated and discussed. Furthermore, the related strategies can be applied into various fields, including mechano-luminescence, second-order non-linear optics, mechanochromism and OLEDS, in which the opto-electronic properties can be the static performance and/or dynamic response stimulated by force, light, heat and electric field. Finally, the controllability and predictability of molecular design of optoelectronic materials are effectively demonstrated by the established relationship between molecular structures-stacking modes and intermolecular interactions, together with the proposed effective strategies for the adjustment of molecular aggregation behaviors.

Contents

1 Introduction

2 Research on organic room temperature phosphorescence materials as aggregate state

2.1 Internal mechanism and the control strategy

2.2 The structure-stacking-property relationship

3 Dynamic molecular aggregates in organic opto-electronic materials with single components

3.1 Mechano-stimulation response

3.2 Photo-stimulation response

3.3 Electric field-stimulation response

3.4 Environment-stimulation response

4 Rational adjustment of molecular aggregate states in complex systems

5 Conclusion

Fig. 1 Schematic diagram of structure-stacking-property relationship and adjustment of aggregate state by different methods
Fig. 2 Jablonski diagram (Ex: Excitation, F: Fluorescence, P: Phosphorescence, ISC: Intersystem crossing, IC: Internal conversion, Vr: Vibrational relaxation, Nr: Nonradiative transition)
Fig. 3 (a) Chemical structure, (b) images of polymorphism before and after turning off UV radiation, (c) corresponding conformations and stacking modes of CzS-CN[11]. Copyright 2017, Royal Society of Chemistry
Fig. 4 (a) Molecular structure, two kinds of conformations of PTZ-3Cl in polymorphisms, and their conversion diagram under different stimulus; (b) photoluminescence spectra, (c) stacking modes, and (d) the possible ISC processes of PTZ-3Cl polymorphisms[12]. Copyright 2021, Royal Society of Chemistry
Fig. 5 (a) Chemical structure, molecular conformations, stacking modes, corresponding photoluminescence and phosphorescence spectra of DBTDO-DMAC polymorphisms at room temperature[14]. Copyright 2021, Springer Nature. (b) Chemical structure, molecular conformations, stacking modes, corresponding phosphorescence lifetime and mechano-luminescence spectra of TPA-o-3COOMe polymorphisms at room temperature[15]. Copyright 2019, John Wiley and Sons
Fig. 6 (a) Chemical structure of CS-2COOCH3, (b) fluorescence spectra and (c) phosphorescence spectra of CS-2COOCH3 in crystal, ground state and doped in PMMA film at room temperature, (d) the rates of fluorescent radiative transitions (kr) and non-radiative transitions (knr) for CS-2COOCH3 in different states[17]. Copyright 2020, Royal Society of Chemistry. (e) Schematic diagram of the effect of π-π stacking on energy levels by substituent, (f) π-π stacking modes of phenothiazine oxide with different substituents, images of CS-CH3O and CS-F crystals before and after UV radiation[7]. Copyright 2018, Springer Nature
Fig. 7 (a) Schematic diagram of hydrogen bond, (b) chemical structure of CAA, stacking modes and photos of CAA crystal before and after UV radiation[18]. Copyright 2018, Royal Society of Chemistry. (c) Chemical structures of PBA derivatives, PL spectra, photos of PBA derivatives crystals before and after UV radiation, intermolecular hydrogen bonds in PBA-OMe and PBA-OPr crystals[19]. Copyright 2017, Royal Society of Chemistry
Fig. 8 (a) Chemical structures of XCO-Ph, XCO-PhCl, XCO-tBu and XCO-PiCl, RTP lifetimes, stacking mode and hydrogen bond in the corresponding crystals[20]. Copyright 2020, John Wiley and Sons. b) Chemical structures of PIth-Cn, RTP lifetimes (inset: images before and after UV radiation of PIth-C6 crystal), stacking mode and intermolecular interactions in the corresponding crystals[21]. Copyright 2021, Royal Society of Chemistry. c) Chemical structures of CS-Cn H 2 n + 1, RTP lifetimes and stacking modes in the corresponding crystals[22]. Copyright 2019, Royal Society of Chemistry
Fig. 9 (a) Chemical structures of C-TPA, C-TPA-OMe and C-TPA-Me, quantum yields and RTP lifetimes of the corresponding crystals, and energy level schematic diagram. (b) Intermolecular interactions in C-TPA, C-TPA-OMe and C-TPA-Me crystals[23]. Copyright 2022, Royal Society of Chemistry. (c) Chemical structures of BP-o-BO, BP-m-BO and BP-p-BO, quantum yields and RTP lifetimes of the corresponding crystals, and energy level schematic diagram. (d) Intermolecular interactions and stacking modes in BP-o-BO, BP-m-BO and BP-p-BO crystals[24]. Copyright 2020, Royal Society of Chemistry
Fig. 10 (a) The mechanism of controlling molecular packing based on the steric and electronic effects and design strategy of molecule. (b) The PL spectra of PPCHO in crystal and ground state. (c) The possible intersystem crossing of PPCHO crystal; (d) Fluorescence images and PL spectra of PPCHO crystal under the increased hydrostatic pressures. (e) Fluorescence images and PL spectra of PPCHO crystal under the decreased hydrostatic pressures[27]. Copyright 2020, John Wiley and Sons
Fig. 11 (a) Schematic diagram of mechanoluminescence, chemical structure of TMPE, images of mechanoluminescence and stacking modes in polymorphisms[29]. Copyright 2016, Royal Society of Chemistry. (b) Chemical structure of TPA-X, and schematic diagram of mechanoluminescence properties in different stacking modes[32]. Copyright 2019, John Wiley and Sons. (c) Chemical structure, relationship between pressure and luminescence intensity, mechanoluminescence device and stacking mode in tPE-2-Th crystal[33]. Copyright 2020, Elsevier
Fig. 12 (a) Chemical structure of DPP-BO, photoluminescence spectra of DPP-BO crystal at 298 and 77 K, ML spectra of DPP-BO crystal at room temperature, and typical molecular packing in single crystal[34]. Copyright 2017, John Wiley and Sons. (b) Chemical structure of BrFLu-CBr, photos and XRD of BrFLu-CBr crystal under mechano-stimulation[35]. Copyright 2018, John Wiley and Sons. (c) Chemical structure of FCO-CzS, photos of FCO-CzS crystal under different states[36]. Copyright 2018, John Wiley and Sons. (d) Chemical structure of CzS-Ph-3F, photos of CzS-Ph-3F crystal before and after UV irradiation, photos of CzS-Ph-3F powder before and after UV irradiation[37]. Copyright 2021, John Wiley and Sons
Fig. 13 (a) Schematic diagram of UV source; (b) chemical structure of CS-CF3, RTP spectra and molecular packing of CS-CF3 crystal before and after UV illumination[7]. Copyright 2018, Springer Nature. (c) Chemical structure of TPA-B, RTP spectra and molecular packing of TPA-B crystal before and after UV illumination[38]. Copyright 2019, John Wiley and Sons
Fig. 14 (a) Bending angle and contraction rate of stretched FOB-PET film under UV irradiation, and scheme of photodynamic process of FOB-PET film under light excitation at 360 nm[39]. Copyright 2020, John Wiley and Sons. (b) Chemical structures and photo-induced cyclization process of triphenylethylene derivatives and the corresponding muilti-photoresponsive properties, photographs of triphenylethylene derivatives at initial state and after UV irradiation for 5 s, molecule conformations and intramolecular interactions of triphenylethylene derivatives[40]. Copyright 2021, Royal Society of Chemistry. (c) Schematic representation of structures of triarylamine derivatives and the photoactivated phosphorescence and photochromic property in the PMMA film[41]. Copyright 2021, John Wiley and Sons
Fig. 15 (a) Schematic diagram of the adjustment of chromophore orientation by electric field; (b) chemical structures of M1-M5, d33 and T80% values of the corresponding films[44]. Copyright 2016, Royal Society of Chemistry. (c) Chemical structures of D-13N, D-17N, D-21N, d33 and T80% values of the corresponding films[45]. Copyright 2017, Royal Society of Chemistry. (d) Chemical structures of ring molecule R1 and the reference molecule H1, d33 and T80% values of the corresponding films[46]. Copyright 2018, Royal Society of Chemistry
Fig. 16 Chemical structures of (a) tPE-5-MePh[47]. Copyright 2019, Royal Society of Chemistry. (b) CzS-o-py[48]. Copyright 2020, Elsevier. (c) CPBBr[49]. Copyright 2021, Royal Society of Chemistry. (d) DPP-BOH-PVA[50]. Copyright 2022, Springer Nature. Images of photophysical properties and aggregated structures of corresponding materials before and after stimulation by heat, hydrochloric acid or water
Fig. 17 (a) Chemical structures and RTP properties of M-R host-guest system; (b) phosphorescence images of M-CH3 system with different mass ratios[51]. Copyright 2021, John Wiley and Sons. (c) Chemical structure of OPPh3/Pph/BPph/DBPph, photos of cocrystal before and after UV radiation[52]. Copyright 2021, John Wiley and Sons. (d) Chemical structures of DMAP and Cdp, images of DMAP/Cdp host-guest system before and after UV radiation, and schematic diagram of DMAP/Cdp host-guest system under force and thermal stimulation[54]. Copyright 2020, Elsevier
Fig. 18 (a) Chemical structures of DAc-C1~DAc-C5 and external quantum efficiency of the corresponding OLED devices; (b) schematic diagram of OLED device; (c) stacking modes in DAc-C1~DAc-C5 crystals[61]. Copyright 2020, Elsevier
[1]
(a) Jing X P. Prog. Chem., 2020, 32: 1049

pmid: 33156611
(荆西平. 化学进展, 2020, 32: 1049);

pmid: 33156611
(b) Bartell L S. Annu. Rev. Phys. Chem., 1998, 49: 43

pmid: 33156611
(c) Chamorro J R, McQueen T M, Tran T T. Chem. Rev., 2021, 121: 2898

doi: 10.1021/acs.chemrev.0c00641 pmid: 33156611
(d) Liu X Y. Prog. Chem., 2020, 32: 1184

pmid: 33156611
(刘晓旸. 化学进展, 2020, 32: 1184);

pmid: 33156611
(e) Vlad P N, Gerli I, Kralj S. Int. J. mol. Sci., 2009, 10: 3971

doi: 10.3390/ijms10093971 pmid: 33156611
(f) Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H. Chem. Rev., 2017, 117: 6225.

doi: 10.1021/acs.chemrev.6b00558 pmid: 33156611
[2]
(a) Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J, Park S Y,. J. Am. Chem. Soc., 2009, 131: 14043

doi: 10.1021/ja902533f
(b) Wu Q, Ma H, Ling K, Gan N, Cheng Z, Gu L, Cai S, An Z, Shi H, Huang W. ACS Appl. Mater. Interfaces, 2018, 10: 33730

doi: 10.1021/acsami.8b13713
(c) Tao Y, Chen R, Li H, Yuan J, Wan Y, Jiang H, Chen C, Si Y, Zheng C, Yang B, Xing G, Huang W. Adv. Mater., 2018, 30: 1803856

doi: 10.1002/adma.201803856
(d) Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K. Adv. Mater., 2017, 29: 1606665

doi: 10.1002/adma.201606665
(e) Zhang C, Pu K. Small Struct., 2020, 1: 2000026

doi: 10.1002/sstr.202000026
(f) Wang S, Yousefi Amin A, Wu L, Cao M, Zhang Q, Ameri T. Small Struct., 2021, 2: 2000124

doi: 10.1002/sstr.202000124
(g) Yu H, Tang J, Feng Y, Feng W. Chin. J. Polym. Sci., 2019, 37: 1183

doi: 10.1007/s10118-019-2331-z
(h) Li X, Xie Y, Li Z. Adv. Photonics Res., 2021, 2: 2000136

doi: 10.1002/adpr.202000136
(i) Li Y, Gu F, Ding B, Zou L, Ma X. Sci. China Chem., 2021, 64: 1297;

doi: 10.1007/s11426-021-9978-1
(j) Tian Y, Tong X, Li J, Gao S, Cao R. Chin. J. Chem., 2022, 40: 487;

doi: 10.1002/cjoc.202100703
(k) Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Chin. J. Chem., 2021, 39: 1364

doi: 10.1002/cjoc.202000609
(l) Liu Y, Guo Y, Liu Y,. Small Struct., 2021, 2: 2000083
(m) Han X, Xu Z, Wu W, Liu X, Yan P, Pan C. Small Struct., 2020, 1: 2000029.

doi: 10.1002/sstr.202000029
[3]
Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., 2001, 18: 1740.
[4]
(a) Chen J, Law C C W, Lam J W Y, Dong Y, Lo S M F, Williams I D, Zhu D, Tang B Z. Chem. Mater., 2003, 15: 1535;

doi: 10.1021/cm021715z
(b) Han T, Yan D, W Q, Song N, Zhang H, Wang, D. Chin. J. Chem., 2021, 39: 677;

doi: 10.1002/cjoc.202000520
(c) Tu L, Xie Y, Li Z, Tang B. SmartMat., 2021, 2: 326.

doi: 10.1002/smm2.1060
[5]
(a) Zong L, Zhang H, Li Y, Gong Y, Li D, Wang J, Wang Z, Xie Y, Han M, Peng Q, Li X, Dong J, Qian J, Li Q, Li Z. ACS Nano, 2018, 12: 9532;

doi: 10.1021/acsnano.8b05090
(b) Liu F, Liao Q, Wang J, Gong Y, Dang Q, Ling W, Han M, Li Q, Li Z. Sci. China Chem., 2020, 63: 1435;

doi: 10.1007/s11426-020-9814-7
(c) Li Q, Li Z. Sci. China Chem., 2015, 58: 1800.

doi: 10.1007/s11426-015-5517-4
[6]
(a) Li Q, Li Z. Adv. Sci., 2017, 4: 1600484;

doi: 10.1002/advs.201600484
(b) Li Q, Li Z. Sci. China Mater., 2020, 63: 177;

doi: 10.1007/s40843-019-1172-2
(c) Wang J F, 李振 . Acta Chim. Sinica, 2021, 79: 575;

doi: 10.6023/A21010029
(王金凤, 李振. 化学学报, 2021, 79: 575);
(d) Yang J, Fang M, Li Z. Aggregate, 2020, 1: 6;

doi: 10.1002/agt2.2
(e) Xie Y, Li Z. Natl. Sci. Rev., 2021, 8: nwaa199;

doi: 10.1093/nsr/nwaa199
(f) Liu Y, Guo Y, Liu Y,. Small Struct., 2021, 2: 2000083;

doi: 10.1002/sstr.202000083
(g) Fang M, Yang J, Li Z. Chin. J. Polym. Sci., 2019, 37: 383;

doi: 10.1007/s10118-019-2218-z
(h) Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. Sci. China Chem., 2021, 64: 445;

doi: 10.1007/s11426-020-9907-9
(i) Wang J, Zhang L, Li Z. Adv. Healthcare Mater., 2021, 10: 2101169.

doi: 10.1002/adhm.202101169
[7]
Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6 pmid: 29483501
[8]
(a) Li Q, Li Z. Accouts Chem. Res., 2020, 53: 962;
(b) Li A S, Wang J F, Li Z. Chin. J. Lumin., 2021, 42: 283.
(李爱森, 王金凤, 李振. 发光学报, 2021, 42: 283.).
[9]
(a) Chen J, Rahman N U, Mao Z, Zhao J, Yang Z, Liu S, Zhang Y, Chi Z. J. Mater. Chem. C, 2019, 7: 8250;

doi: 10.1039/C9TC01870K pmid: 31068598
(b) Chen J, Yu T, Ubba E, Xie Z, Yang Z, Zhang Y, Liu S, Xu J, Aldred M P, Chi Z. Adv. Optical Mater., 2019, 7: 1801593;

doi: 10.1002/adom.201801593 pmid: 31068598
(c) Zhan G, Liu Z, Bian Z, Huang C. Front. Chem., 2019, 7: 305;

doi: 10.3389/fchem.2019.00305 pmid: 31068598
(d) Kenry , Chen C, Liu B, Nat. Commun., 2019, 10: 2111;

doi: 10.1038/s41467-019-10033-2 pmid: 31068598
(e) Li Y, Gecevicius M, Qiu J. Chem. Soc. Rev., 2016, 45: 2090;

doi: 10.1039/C5CS00582E pmid: 31068598
(f) Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem. Rev., 2018, 118: 1770;

doi: 10.1021/acs.chemrev.7b00425 pmid: 31068598
(g) Du L, Jiang B, Chen X, Wang Y, Zou L, Liu Y, Gong Y, Wei C, Yuan W. Chin. J. Polym. Sci., 2019, 37: 409;

doi: 10.1007/s10118-019-2215-2 pmid: 31068598
(h) Fan Y, Li Q, Li Z. Mater. Chem. Front., 2021, 5: 1525;

doi: 10.1039/D0QM00851F pmid: 31068598
(i) Barman D, Narang K, Parui R, Zehra N, Khatun M, Adil L, Iyer P. Aggregate, 2022, 00: 172.

pmid: 31068598
[10]
(a) Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114: 6090

doi: 10.1021/jp909388y pmid: 29064248
(b) Xiao L, Wu Y, Chen J, Yu Z, Liu Y, Yao J, Fu H. J. Phys. Chem. A, 2017, 121: 8652

doi: 10.1021/acs.jpca.7b10160 pmid: 29064248
(c) Zhou B, Yan D. Adv. Funct. Mater., 2019, 29: 1807599

doi: 10.1002/adfm.201807599 pmid: 29064248
(d) Han J, Feng W, Muleta D Y, Bridgmohan C N, Dang Y, Xie G, Zhang H, Zhou X, Li W, Wang L, Liu D, Dang Y, Wang T, Hu W. Adv. Funct. Mater., 2019, 29: 1902503

doi: 10.1002/adfm.201902503 pmid: 29064248
(e) Wu H, Gu L, Baryshnikov G V, Wang H, Minaev B F, Agren H, Zhao Y. ACS Appl. Mater. Interfaces, 2020, 12: 20765

doi: 10.1021/acsami.0c04859 pmid: 29064248
(f) Hackney H, Perepichka D. Aggregate, 2021, 00: 123

pmid: 29064248
(g) Gong Y, Yang J, Fang M, Li Z. Cell Rep. Phys. Sci., 2022, 3: 100663.

pmid: 29064248
[11]
Yang J, Ren Z, Chen B, Fang M, Zhao Z, Tang B Z, Peng Q, Li Z. J. Mater. Chem. C, 2017, 5: 9242.

doi: 10.1039/C7TC03656F
[12]
Gao M, Tian Y, Yang J, Li X, Fang M, Li Z. J. Mater. Chem. C, 2021, 9: 15375.

doi: 10.1039/D1TC03460J
[13]
(a) Zhan L, Chen Z, Gong S, Xiang Y, Ni F, Zeng X, Xie G, Yang C. Angew. Chem. Int. Ed., 2019, 58: 17651

doi: 10.1002/anie.201910719
(b) He Z, Cai X, Wang Z, Li Y, Xu Z, Liu K, Chen D, Su S J. J Mater. Chem. C, 2018, 6: 36

doi: 10.1039/C7TC02763J
(c) Chen Y, Chen D, Chen Y, Wu C, Chang K, Meng F, Chen M, Lin J, Huang C, Su J, Tian H, Chou P T. Chem. Eur. J., 2019, 25: 16755

doi: 10.1002/chem.201904900
(d) Yamamoto K, Higashibayashi S. Chem. Eur. J., 2016, 22: 663.

doi: 10.1002/chem.201504144
[14]
Li S, Xie Y, Li A, Li X, Che W, Wang J, Shi H, Li Z. Sci. China Mater., 2021, 64: 2813.

doi: 10.1007/s40843-021-1658-9
[15]
Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Huang A, Lin P, Li C, Li Q, Li Z. Angew. Chem. Int. Ed., 2019, 58: 17297.

doi: 10.1002/anie.201911648
[16]
Kasha M, Rawls H R, El-Bayoumi M A. Pure Appl. Chem., 1965, 11: 371.

doi: 10.1351/pac196511030371
[17]
Wang Y, Yang J, Tian Y, Fang M, Liao Q, Wang L, Hu W, Tang B Z, Li Z. Chem. Sci., 2020, 11: 833.

doi: 10.1039/C9SC04632A
[18]
Fang M M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater. Chem. Front., 2018, 2: 2124.

doi: 10.1039/C8QM00396C
[19]
Chai Z F, Wang C, Wang J F, Liu F, Xie Y, Zhang Y Z, Li J R, Li Q, Li Z. Chem. Sci., 2017, 8: 8336.

doi: 10.1039/C7SC04098A
[20]
Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. Angew. Chem. Int. Ed., 2020, 59: 9946.

doi: 10.1002/anie.201916057
[21]
Yu Y, Fan Y, Wang C, Wei Y, Liao Q, Li Q, Li Z. Mater. Chem. Front., 2021, 5: 817.

doi: 10.1039/D0QM00576B
[22]
Yang J, Gao H, Wang Y, Yu Y, Gong Y, Fang M, Ding D, Hu W, Tang B Z, Li Z. Mater. Chem. Front., 2019, 3: 1391.

doi: 10.1039/C9QM00108E
[23]
Han M, Xu Z, Lu J, Xie Y, Li Q, Li Z. Mater. Chem. Front., 2022, 6: 33.

doi: 10.1039/D1QM01184G
[24]
Che W, Gong Y, Tu L, Han M, Li X, Xie Y, Li Z. Phys. Chem. Chem. Phys., 2020, 22: 21445.

doi: 10.1039/D0CP02881A
[25]
(a) Yang Z, Chi Z, Mao Z, Zhang Y, Liu S, Zhao J, Aldred M P, Chi Z,. Mater. Chem. Front., 2018, 2: 861
(b) Xue P, Ding J, Wang P, Lu R. J. Mater. Chem. C, 2016, 4: 6688.

doi: 10.1039/C6TC01503D
[26]
Gong Y, Zhang P, Gu Y, Wang J, Han M, Chen C, Zhan X, Xie Z, Zou B, Peng Q, Chi Z, Li Z. Adv. Optical Mater., 2018, 6: 1800198.

doi: 10.1002/adom.201800198
[27]
Gong Y, He S, Li Y, Li Z, Liao Q, Gu Y, Wang J, Zou B, Li Q, Li Z,. Adv. Optical Mater., 2020, 8: 1902036.

doi: 10.1002/adom.201902036
[28]
(a) Xie Y, Li Z. Mater. Chem. Front., 2020, 4: 317

doi: 10.1039/C9QM00580C
(b) Ma Z, Huang L, Qian C. Chem. Eur. J., 2020, 26: 11914

doi: 10.1002/chem.202000526
(c) Yang J, Fang M M, Li Z. Infomat, 2020, 2: 791

doi: 10.1002/inf2.12107
(d) Chang K, Li Q, Li Z. Chin. J. Org. Chem., 2020, 40: 3656.

doi: 10.6023/cjoc202006052
[29]
Wang C, Xu B, Li M, Chi Z, Xie Y, Li Q, Li Z. Mater. Horiz., 2016, 3: 220.

doi: 10.1039/C6MH00025H
[30]
Xie Y, Tu J, Zhang T, Wang J, Xie Z, Chi Z, Peng Q, Li Z. Chem. Commun., 2017, 53: 11330.

doi: 10.1039/C7CC04663D
[31]
(a) Yu Y, Fan Y, Wang C, Wei Y, Liao Q, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 13759

pmid: 31737820
(b) Tu J, Liu F, Wang J, Li X, Gong Y, Fan Y, Han M, Li Q, Li Z. Chemphotochem, 2019, 3: 133

pmid: 31737820
(c) Tu J, Fan Y, Wang J, Li X, Liu F, Han M, Wang C, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 12256

pmid: 31737820
(d) Liu F, Tu Z, Fan Y, Li Q, Li Z. ACS Omega, 2019, 4: 18609.

doi: 10.1021/acsomega.9b02416 pmid: 31737820
[32]
Yu Y, Wang C, Wei Y, Fan Y, Yang J, Wang J, Han M, Li Q, Li Z. Adv. Optical Mater., 2019, 7: 1900505.

doi: 10.1002/adom.201900505
[33]
Wang C, Yu Y, Yuan Y, Ren C, Liao Q, Wang J, Chai Z, Li Q, Li Z. Matter, 2020, 2: 181.

doi: 10.1016/j.matt.2019.10.002
[34]
Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew. Chem. Int. Ed., 2017, 56: 880.

doi: 10.1002/anie.201610453 pmid: 27936297
[35]
Wang J, Wang C, Gong Y, Liao Q, Han M, Jiang T, Dang Q, Li Y, Li Q, Li Z. Angew. Chem. Int. Ed., 2018, 57: 16821.

doi: 10.1002/anie.201811660
[36]
Yang J, Qin J, Geng P, Wang J, Fang M, Li Z. Angew. Chem. Int. Ed., 2018, 57: 14174.

doi: 10.1002/anie.201809463 pmid: 30182479
[37]
Ren J, Wang Y, Yu Tian, Liu Z, Xiao X, Yang J, Fang M, Zhen Li. Angew. Chem. Int. Ed., 2021, 60: 12335.

doi: 10.1002/anie.202101994 pmid: 33719198
[38]
Dang Q, Hu L, Wang J, Zhang Q, Han M, Luo S, Gong Y, Wang C, Li Q, Li Z. Chem. Eur. J. 2019, 25: 7031.

doi: 10.1002/chem.201901116
[39]
Huang A, Hu J, Han M, Wang K, Xia J L, Song J, Fu X, Chang K, Deng X, Liu S, Li Q, Li Z. Adv. Mater., 2021, 33: 2005249.

doi: 10.1002/adma.202005249
[40]
Fan Y, Han M, Huang A, Liao Q, Tu J, Liu X, Huang B, Li Q, Li Z. Mater. Horiz., 2022, 9: 368.

doi: 10.1039/D1MH01207J
[41]
Yang Y, Wang J, Li D, Yang J, Fang M, Li Z. Adv. Mater., 2021, 33: 2104002.

doi: 10.1002/adma.202104002
[42]
Wang Y, Yang J, Fang M, Gong Y, Ren J, Tu L, Tang B Z, Li Z. Adv. Funct. Mater., 2021, 31: 2101719.

doi: 10.1002/adfm.202101719
[43]
(a) Li Z A, Li Z. Acta Polym. Sin., 2017, (2): 155
(李忠安, 李振. 高分子学报, 2017, (2): 155);
(b) Li Z, Li Q, Qin J. Polym. Chem., 2011, 2: 2723

doi: 10.1039/c1py00205h
(c) Wu W, Huang L, Song C, Yu G, Ye C, Liu Y, Qin J, Li Q, Li Z. Chem. Sci., 2012, 3: 1256

doi: 10.1039/c2sc00834c
(d) Wu W, Ye C, Qin J, Li Z. ChemPlusChem, 2013, 78: 1523

doi: 10.1002/cplu.201300252
(e) Wu W, Huang Q, Qiu G, Ye C, Qin J, Li Z. J. Mater. Chem., 2012, 22: 18486

doi: 10.1039/c2jm33129b
(f) Tang R, Chen H, Zhou S, Xiang W, Tang X, Liu B, Dong Y, Zeng H, Li Z. Polym. Chem., 2015, 6: 5580

doi: 10.1039/C5PY00155B
(g) Liu G, Liao Q, Deng H, Zhao W, Chen P, Tang R, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 7344

doi: 10.1039/C9TC01724K
(h) Zang X, Liu H, Li Q, Li Z, Li Z,. Polym. Chem., 2020, 11: 5493.

doi: 10.1039/D0PY00970A
[44]
Chen P, Yin X, Xie Y, Li S, Luo S, Zeng H, Guo G, Li Q, Li Z. J. Mater. Chem. C, 2016, 4: 11474.

doi: 10.1039/C6TC04282A
[45]
Tang R, Zhou S, Cheng Z, Yu G, Peng Q, Zeng H, Guo G, Li Q, Li Z. Chem. Sci., 2017, 8: 340.

doi: 10.1039/C6SC02956F
[46]
Chen P, Liu G, Zhang H, Jin M, Han M, Cheng Z, Peng Q, Li Q, Li Z. J. Mater. Chem. C, 2018, 6: 6784.

doi: 10.1039/C8TC01598H
[47]
Wang C, Yu Y, Chai Z, He F, Wu C, Gong Y, Han M, Li Q, Li Z. Mater. Chem. Front., 2019, 3: 32.

doi: 10.1039/C8QM00411K
[48]
Tian Y, Gong Y, Liao Q, Wang Y, Ren J, Fang M, Yang J, Li Z. Cell Rep. Phys. Sci., 2020, 1: 100052.
[49]
Chen Y, Li X, Che W, Tu L, Xie Y, Li Z. J. Mater. Chem. C, 2021, 9: 11738.

doi: 10.1039/D1TC01540K
[50]
Li D, Yang Y, Yang J, Fang M, Tang B Z, Li Z. Nat. Commun., 2022, 13: 347.

doi: 10.1038/s41467-022-28011-6
[51]
Wang Y, Gao H, Yang J, Fang M, Ding D, Tang B Z, Li Z. Adv. Mater., 2021, 33: 2007811.

doi: 10.1002/adma.202007811
[52]
Tian Y, Yang J, Liu Z, Gao M, Li X, Che W, Fang M, Li Z. Angew. Chem. Int. Ed., 2021, 60: 20259.

doi: 10.1002/anie.202107639
[53]
(a) Yang J, Fang M, Li Z. Acc. Mater. Res., 2021, 2: 644

doi: 10.1021/accountsmr.1c00084
(b) Fang M, Yang J, Li Z. Prog. Mater. Sci., 2022, 125: 100914.

doi: 10.1016/j.pmatsci.2021.100914
[54]
(a) Wang Y, Yang J, Fang M, Yu Y, Zou B, Wang L, Tian Y, Cheng J, Tang B Z, Li Z. Matter, 2020, 3: 449

doi: 10.1016/j.matt.2020.05.005
(b) Zhou B, Yan D. Sci. China Chem., 2021, 64: 509.

doi: 10.1007/s11426-021-9956-y
[55]
Wang Y, Yang J, Gong Y, Fang M, Li Z, Tang B Z. SmartMat, 2020, 1: 1006.
[56]
(a) Lin W, Liu F, Li Q, Li Z. J. Mater. Chem. A, 2021, 9: 18148

doi: 10.1039/D1TA03718H
(b) Dai S, Zhou J, Lau T K, Rech J J, Liu K, Xue P, Xie Z, Lu X, You W, Zhan X. Small Struct., 2020, 1: 2000006

doi: 10.1002/sstr.202000006
(c) Xu X, Li Y, Peng Q. Small Struct., 2020, 1: 2000016.

doi: 10.1002/sstr.202000016
[57]
Liu F, Bi S, Wang X, Leng X, Han M, Xue B, Li Q, Zhou H, Li Z. Sci. China Chem., 2019, 62: 739.

doi: 10.1007/s11426-018-9432-x
[58]
(a) Liu F, Wu F, Ling W, Tu Z, Zhang J, Wei Z, Zhu L, Li Q, Li Z. Acs Energy Lett., 2019, 4: 2514

doi: 10.1021/acsenergylett.9b01539
(b) Liu F, Wu F, Ling W, Zhu L, Li Q, Li Z. Sol. RRL, 2021, 5: 2100070.

doi: 10.1002/solr.202100070
[59]
(a) Zou S J, Shen Y, Xie F M, Chen J D, Li Y Q, Tang J X. Mater. Chem. Front., 2020, 4: 788
(b) Che W, Xie Y, Li Z. Asian J. Org. Chem., 2020, 9: 1262
(c) Li X, Xie Y, Li Z. Chem. Asian J., 2021, 16: 2817.
[60]
(a) Zhan X, Wu Z, Lin Y, Xie Y, Peng Q, Li Q, Ma D, Li Z. Chem. Sci., 2016, 7: 4355
(b) Zong L, Gong Y, Yu Y, Xie Y, Xie G, Peng Q, Li Q, Li Z. Sci. Bull., 2018, 63: 108
(c) Zhan X, Sun N, Wu Z, Tu J, Yuan L, Tang X, Xie Y, Peng Q, Dong Y, Li Q, Ma D, Li Z. Chem. Mater., 2015, 27: 1847
(d) Wang C, Li L, Zhan X, Ruan Z, Xie Y, Hu Q, Ye S, Li Q, Li Z. Sci. Bull., 2016, 61: 1746.
[61]
Han M, Chen Y, Xie Y, Zhang F, Li X, Huang A, Fan Y, Fan Y, Gong Y, Peng Q, Li Q, Ma D, Li Z. Cell Rep. Phys. Sci., 2020, 1: 100252.
[1] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[2] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[5] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[6] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[9] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[10] Zicheng Li, Gongke Li*, Yuling Hu*. Stimuli-Responsive Polymers in Biomedical Applications [J]. Progress in Chemistry, 2017, 29(12): 1480-1487.
[11] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[12] Liang Jiamei, Feng Anchao, Yuan Jinying. Synthesis and Controllable Drug Release of Stimuli-Responsive Star Polymer [J]. Progress in Chemistry, 2015, 27(5): 522-531.
[13] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[14] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[15] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.