中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2202-2221 DOI: 10.7536/PC220117 Previous Articles   Next Articles

• Review •

Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors

Zhao Jing1,2, Wang Ziya3, Mo Lixin1,2(), Meng Xiangyou1,2, Li Luhai1,2, Peng Zhengchun3()   

  1. 1 College of Printing and Packaging Engineering, Beijing Institute of Graphic Communication,Beijing 102600, China
    2 Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication,Beijing 102600, China
    3 Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Mo Lixin, Peng Zhengchun
  • Supported by:
    National Natural Science Foundation of China(61903317); Beijing Natural Science Foundation(KZ202110015019); research plan of BIGC(Ef202002); Joint Funding Program of Guangdong Department of Science and Technology and Hongkong Innovation and Technology(2021A0505110015); Shenzhen Science and Technology Program(KQTD20170810105439418); Shenzhen Science and Technology Program(JCYJ20200109114237902)
Richhtml ( 87 ) PDF ( 1354 ) Cited
Export

EndNote

Ris

BibTeX

The flexible pressure sensor with high flexibility, easy conformality, high sensitivity and fast response is a novel flexible electronic device. It is also the critical device for the development of tactile artificial intelligence, internet of things, wearable electronics and relative technologies. The strategies based on development of sensitive functional materials, device structure design and construction, and optimization of fabrication methods have been widely used to improve the comprehensive performance of flexible pressure sensors. Among them, utilizing the microstructure of functional layer of flexible pressure sensor to enhance its performance is generally considered to be one of the most effective ways. In this paper, the latest research progress of microstructured flexible pressure sensors in recent years is summarized. It mainly focuses on the performance enhancement mechanism of microstructured flexible pressure sensor, microstructure construction and fabrication methods, new sensitive functional materials, as well as its applications in human-machine interaction, medical and health and other relative fields. Finally, the future development of microstructured flexible pressure sensor is prospected.

Fig. 1 Design of flexible pressure sensors with different microstructures: hemisphere, pyramid, nanowire, multi-level, bionic skin micro-nano structure; Simulation curve of the relationship between pressure and resistance based on the above microstructure[9]
Fig. 2 Schematic diagrams of pressure sensors based on different working mechanisms: (a) piezoelectric; (b) piezoresistive; (c) capacitive; (d) triboelectric[13]
Fig. 3 The relationship between the sensitivity of the flexible pressure sensor and the pressure range in literature
Fig. 4 Different applications of flexible pressure sensor in different pressure ranges: (a) sound monitoring[29]; (b) response to tiny weight (≈1 Pa)[30]; (c) human pulse monitoring[31]; (d) touch press response[32]; (e) robotic hand grabbing pressure testing[33]; (f) smart insoles[34]; (g) smart aircraft seats[35]; (h) flight pressure monitoring[36]; (i) car tire pressure monitoring[37]
Fig. 5 Schematic diagram of the sensitivity enhancement mechanism of the capacitive flexible pressure sensor with porous dielectric layer. The change of the electrodes distance and dielectric constant under pressure of sensor (a) without and (b) with the porous dielectric layer; (c) Comparison of the capacitance change between porous and solid dielectric sensor under pressure
Fig. 6 Stress distribution of the microstructured ionic gel dielectric under force[42]
Fig. 7 (a) The evolution of the distribution of conductive particles and its formed paths in the functional layer of flexible sensor under pressure; (b) The evolution of the contact points of conductive fibers under pressure[54]; (c) The analysis of the contact area between the microstructure and the electrode as well as its corresponding stress condition under pressure for the primary structure and (d) the multi-level structure
Fig. 8 Schematic diagram of the polarization of piezoelectric flexible pressure sensor (a) without and (b) with microstructures under pressure
Fig.9 Preparation of the microstructure conformal electrode of reduced graphene oxide using photolithography template method[60]
Fig. 10 (a) Preparation process of microstructured electrodes based on sandpaper template; (b) Raman spectra of conformal deposition of graphene on the surface of microstructures; (c~e) SEM of microstructures[65]
Fig. 11 Process of obtaining the porous microstructure inside the electrode by dissolving white sugar[71]
Fig. 12 SEM and schematic diagram of aerogel sensor[74]
Fig. 13 (a) Process of 3D printing for the active layer and (b) its corresponding process of flexible pressure sensor fabrication[83]; (c) Preparation of the microstructured functional layer by the 3D ink direct writing method in our group and rheological properties of the ink
Fig. 14 (a) The pressure sensitive composite ink based on PDMS, thermal expansion microcapsules and low-dimensional nanomaterials; (b) The porous microstructure formed by thermally expansion microcapsules in PDMS[85]; (c) The sensitivity characteristic curve of the flexible pressure sensor[85]; (d) response time[85]; (e) cyclically stability under 100 kPa[85]; (f) crank arm test[85]; (g) pressure distribution test[85]
Table 1 Comparison of different fabrication methods for the microstructures
Fig.15 Repair mechanism diagram based on multiple hydrogen bond self-repair[88]
Fig.16 Capacitive flexible pressure sensor based on MXene and PVDF-TrFE composite dielectric layer[96]:(a) Preparation process; (b) Interaction of MXene and PVDF-TrFE
Fig. 17 the hemisphere structure coated with (PEDOT:PSS)/ PUD solution and sensitivity curve[27]
Fig.18 Schematic diagram of the flexible pressure sensor based on electric double-layer ion gel[14]
Fig. 19 Typical applications of flexible pressure sensors with microstructures (a) human vocalization monitoring[92]; (b) pulse monitoring[31]; (c) elbow bending monitoring[85]; (d) smart insole[101]; (e) water simulation experiment diagram of sensors used on kayaks[102]; (f) flight pressure monitoring[36]; (g) robotic hand grabbing tennis balls[33]; (h) electronic skin used in robotic hands[103]; (i) electronic skin keyboard[95]; (j) diagram of microstructured sensors
Fig. 20 Applications of the flexible pressure sensor on human health and exercise monitoring[85,104]
Fig. 21 (a) The sensor network can be used on the surface of the human arm and the abdominal skin; (b) the optical image of the electronic skin; (c) the SEM image of the serpentine structure of the sensor array; (d) the composition of the sensor; (e) the sensor is highly stretchable for use in fingers and other skin[103]
Fig. 22 Human-machine interaction interface composed of flexible sensors and soft machines and its practical application[108]
Fig. 23 (a) Photographs of instant controlling of robot hand by demonstrating the gestures from “five” to “one”[109];(b) the diagram of the integrated robot hand, grasping process and its pressure response curve[110]
[1]
Mück J E, Ünal B, Butt H, Yetisen A K. Trends in Biotechnology, 2019, 37(6): 563.

doi: 10.1016/j.tibtech.2019.02.001
[2]
Mishra R B, El-Atab N, Hussain A M, Hussain M M. Adv. Mater. Technol., 2021, 6(4): 2001023.

doi: 10.1002/admt.202001023
[3]
Kalambate P K, Dhanjai, Huang Z M, Li Y K, Shen Y, Xie M L, Huang Y H, Srivastava A K. Trac Trends Anal. Chem., 2019, 115: 147.

doi: 10.1016/j.trac.2019.04.002
[4]
Huang Y, Fan X Y, Chen S C, Zhao N. Adv. Funct. Mater., 2019, 29(12): 1808509.

doi: 10.1002/adfm.201808509
[5]
Qin J, Yin L J, Hao Y N, Zhong S L, Zhang D L, Bi K, Zhang Y X, Zhao Y, Dang Z M. Adv. Mater., 2021, 33(34): e2008267.
[6]
Li J, Bao R R, Tao J, Peng Y Y, Pan C F. J. Mater. Chem. C, 2018, 6(44): 11878.

doi: 10.1039/C8TC02946F
[7]
Chen W F, Yan X. J. Mater. Sci. Technol., 2020, 43: 175.

doi: 10.1016/j.jmst.2019.11.010
[8]
Cai S S, Han Z Y, Wang F L, Zheng K W, Cao Y, Ma Y J, Feng X. Sci. China Inf. Sci., 2018, 61(6): 1.
[9]
He J, Zhang Y F, Zhou R H, Meng L R, Chen T, Mai W J, Pan C F. J. Materiomics, 2020, 6(1): 86.

doi: 10.1016/j.jmat.2020.01.009
[10]
Liu X, Wei Y, Qiu Y Y. Micromachines, 2021, 12(6): 695.

doi: 10.3390/mi12060695
[11]
Wang X W, Liu Z, Zhang T. Small, 2017, 13(25): 1602790.

doi: 10.1002/smll.201602790
[12]
Xiong Y X, Hu Y G, Zhu P L, Sun R, Wang Z P. Prog. Chem., 2019, 31(6): 800.
熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 化学进展, 2019, 31(6): 800. ).

doi: 10.7536/PC181039
[13]
He F L, You X Y, Wang W G, Bai T, Xue G F, Ye M D. Small Methods, 2021, 5(3): 2001041.
[14]
Bai N N, Wang L, Wang Q, Deng J, Wang Y, Lu P, Huang J, Li G, Zhang Y, Yang J L, Xie K W, Zhao X H, Guo C F. Nat. Commun., 2020, 11: 209.

doi: 10.1038/s41467-019-14054-9
[15]
Li S P, Liu H, Zhu Z C, Sun X F, Tang Z H, Guo Y, Hu Q, Zhang Y. Smart Mater. Struct., 2021, 30(2): 025004.

doi: 10.1088/1361-665X/abcca1
[16]
Fernandes L C, Correia D M, Pereira N, Tubio C R, Lanceros-MÉndez S. Compos. Sci. Technol., 2021, 214: 108976.

doi: 10.1016/j.compscitech.2021.108976
[17]
Keum K, Heo J S, Eom J, Lee K W, Park S K, Kim Y H. Sensors, 2021, 21(2): 442.

doi: 10.3390/s21020442
[18]
Chhetry A, Kim J, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2019, 11(3): 3438.

doi: 10.1021/acsami.8b17765
[19]
Xiao Y, Duan Y, Li N, Wu L L, Meng B, Tan F H, Lou Y, Wang H, Zhang W G, Peng Z C. ACS Sens., 2021, 6(5): 1785.

doi: 10.1021/acssensors.0c02547
[20]
Hassinen T, Eiroma K, Mäkelä T, Ermolov V. Sens. Actuat. A Phys., 2015, 236: 343.

doi: 10.1016/j.sna.2015.11.007
[21]
Yeo S Y, Park S, Yi Y J, Kim D H, Lim J A. ACS Appl. Mater. Interfaces, 2017, 9(49): 42996.

doi: 10.1021/acsami.7b15960
[22]
Baek S, Bae G Y, Kwon J, Cho K, Jung S. ACS Appl. Mater. Interfaces, 2019, 11(34): 31111.

doi: 10.1021/acsami.9b09636
[23]
Griffith M J, Cooling N A, Elkington D C, Wasson M, Zhou X J, Belcher W J, Dastoor P C. Nanomaterials, 2021, 11(5): 1185.

doi: 10.3390/nano11051185
[24]
Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L. Nat. Photonics, 2013, 7(9): 752.

doi: 10.1038/nphoton.2013.191
[25]
Ren B, Liu J. Sensors, 2021, 21(11): 3780.

doi: 10.3390/s21113780
[26]
Eom J H, Choi H J, Pammi S V N, Tran V D, Kim Y J, Kim H J, Yoon S G. J. Mater. Chem. C, 2018, 6(11): 2786.

doi: 10.1039/C8TC00081F
[27]
Lee Y, Myoung J, Cho S, Park J, Kim J, Lee H, Lee Y, Lee S, Baig C, Ko H. ACS Nano, 2021, 15(1): 1795.

doi: 10.1021/acsnano.0c09581
[28]
Gao L B, Han Y, Surjadi J U, Cao K, Zhou W Z, Xu H C, Hu X K, Wang M Z, Fan K Q, Wang Y J, Wang W D, Espinosa H D. Sci. China Mater., 2021, 64(8): 1977.

doi: 10.1007/s40843-020-1637-9
[29]
Park J, Kim M, Lee Y, Lee H S, Ko H. Sci. Adv., 2015, 1(9): e1500661.

doi: 10.1126/sciadv.1500661
[30]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Adv. Mater., 2016, 28(26): 5300.

doi: 10.1002/adma.201600408
[31]
Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S W, Kim J J, Kim S Y, Ko H. NPG Asia Mater., 2018, 10(4): 163.

doi: 10.1038/s41427-018-0031-8
[32]
Wang J, Tenjimbayashi M, Tokura Y, Park J Y, Kawase K, Li J T, Shiratori S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30689.

doi: 10.1021/acsami.8b08933
[33]
Wang Y C, Chen J N, Mei D Q. Sens. Actuat. A Phys., 2020, 307: 111972.

doi: 10.1016/j.sna.2020.111972
[34]
Zhuang Y, Guo Y L, Li J, Yu Y Q, Jiang K Y, Zhang H, Guo S. Int. J. Adv. Manuf. Technol., 2021, 112(7/8): 2211.

doi: 10.1007/s00170-020-06560-8
[35]
Campos G H, Xi F. Appl. Ergon., 2020, 84: 103006.

doi: 10.1016/j.apergo.2019.103006
[36]
Borup K T, Fossen T I, Johansen T A. IEEE Trans. Aerosp. Electron. Syst., 2020, 56(3): 2157.

doi: 10.1109/TAES.2019.2945383
[37]
Shao T Y, Wu J N, Zhang Y H, Cheng Y R, Zuo Z Q, Lv H K, Ying M L, Wong C P, Li Z. Adv. Mater. Technol., 2020, 5(5): 2070027.

doi: 10.1002/admt.202070027
[38]
Su Q, Huang X, Lan K B, Xue T, Gao W, Zou Q. J. Micromech. Microeng., 2020, 30(1): 015009.

doi: 10.1088/1361-6439/ab5a2b
[39]
Hou X Y, Guo C F. Acta Phys. Sin., 2020, 69(17): 178102.

doi: 10.7498/aps.69.20200987
侯星宇, 郭传飞. 物理学报, 2020, 69(17): 178102. ).
[40]
Kwon D, Lee T I, Shim J, Ryu S, Kim M S, Kim S, Kim T S, Park I. ACS Appl. Mater. Interfaces, 2016, 8(26): 16922.

doi: 10.1021/acsami.6b04225
[41]
Wei P Q, Guo X L, Qiu X B, Yu D L. Nanotechnology, 2019, 30(45): 455501.

doi: 10.1088/1361-6528/ab3695
[42]
Qiu Z G, Wan Y B, Zhou W H, Yang J Y, Yang J L, Huang J, Zhang J M, Liu Q X, Huang S Y, Bai N N, Wu Z G, Hong W, Wang H, Guo C F. Adv. Funct. Mater., 2018, 28(37): 1870264.

doi: 10.1002/adfm.201870264
[43]
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z N. Nat. Mater., 2010, 9(10): 859.

doi: 10.1038/nmat2834 pmid: 20835231
[44]
Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J M, Ahn J, Cho I, Jeong Y, Oh Y, Park I. ACS Appl. Mater. Interfaces, 2020, 12(1): 1698.

doi: 10.1021/acsami.9b20097
[45]
Chen M R, Luo W F, Xu Z Q, Zhang X P, Xie B, Wang G H, Han M. Nat. Commun., 2019, 10: 4024.

doi: 10.1038/s41467-019-12030-x
[46]
Stru¨mpler R, Glatz-Reichenbach J. J. Electroceramics, 1999, 3(4): 329.

doi: 10.1023/A:1009909812823
[47]
Li F C, Kong Z, Wu J H, Ji X Y, Liang J J. Acta Phys. Sin., 2021, 70(10): 1.
李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰. 物理学报, 2021, 70(10): 1. ).
[48]
Zhang W G, Xiao Y, Duan Y, Li N, Wu L L, Lou Y, Wang H, Peng Z C. ACS Appl. Mater. Interfaces, 2020, 12(43): 48938.

doi: 10.1021/acsami.0c12369
[49]
Feng C F, Yi Z F, Jin X, Seraji S M, Dong Y J, Kong L X, Salim N. Compos. B Eng., 2020, 194: 108065.

doi: 10.1016/j.compositesb.2020.108065
[50]
Zhang J P, Wang Z Y, Peng Z C. Adv. Theory Simul., 2021, 4(12): 2100247.

doi: 10.1002/adts.202100247
[51]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv. Mater., 2014, 26(21): 3451.

doi: 10.1002/adma.201305182
[52]
Shu Y, Tian H, Yang Y, Li C, Cui Y L, Mi W T, Li Y X, Wang Z, Deng N Q, Peng B, Ren T L. Nanoscale, 2015, 7(18): 8636.

doi: 10.1039/c5nr01259g pmid: 25901569
[53]
Zhou X, Zhang Y N, Yang J, Li J L, Luo S, Wei D P. Nanomaterials, 2019, 9(4): 496.

doi: 10.3390/nano9040496
[54]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.

doi: 10.1002/adma.201303041
[55]
Chen X, Shao J, Tian H, Li X, Li S. Advanced materials and technologies., 2020, 5(7): 2000046.

doi: 10.1002/admt.202000046
[56]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z N. Adv. Funct. Mater., 2014, 24(34): 5427.

doi: 10.1002/adfm.201400712
[57]
Cho S H, Lee S W, Yu S, Kim H, Chang S, Kang D, Hwang I, Kang H S, Jeong B, Kim E H, Cho S M, Kim K L, Lee H, Shim W, Park C. ACS Appl. Mater. Interfaces, 2017, 9(11): 10128.

doi: 10.1021/acsami.7b00398
[58]
Zhu B W, Ling Y Z, Yap L W, Yang M J, Lin F G, Gong S, Wang Y, An T C, Zhao Y M, Cheng W L. ACS Appl. Mater. Interfaces, 2019, 11(32): 29014.

doi: 10.1021/acsami.9b06260
[59]
Cheng L, Wang R, Hao X, Liu G. Sensors, 2021, 21(1): 289.

doi: 10.3390/s21010289
[60]
Zhu B W, Niu Z Q, Wang H, Leow W R, Wang H, Li Y G, Zheng L Y, Wei J, Huo F W, Chen X D. Small, 2014, 10(18): 3625.

doi: 10.1002/smll.201401207
[61]
Wang X L, Xia Z D, Zhao C, Huang P, Zhao S F, Gao M, Nie J K. Sens. Actuat. A Phys., 2020, 312: 112147.

doi: 10.1016/j.sna.2020.112147
[62]
Lyu H B, Ping X Y, Gao R Q, Xu L L, Pan L J. Chin. J. Chem. Phys., 2017, 30(5): 603.

doi: 10.1063/1674-0068/30/cjcp1706126
[63]
Wan Y B, Qiu Z G, Huang J, Yang J Y, Wang Q, Lu P, Yang J L, Zhang J M, Huang S Y, Wu Z G, Guo C F. Small, 2018, 14(35): e1801657.
[64]
Li T, Luo H, Qin L, Wang X W, Xiong Z P, Ding H Y, Gu Y, Liu Z, Zhang T. Small, 2016, 12(36): 5042.

doi: 10.1002/smll.201600760
[65]
Tang X, Wu C Y, Gan L, Zhang T, Zhou T T, Huang J, Wang H, Xie C S, Zeng D W. Small, 2019, 15(10): e1804559.
[66]
Jian M Q, Xia K L, Wang Q, Yin Z, Wang H M, Wang C Y, Xie H H, Zhang M C, Zhang Y Y. Adv. Funct. Mater., 2017, 27(9): 1606066.

doi: 10.1002/adfm.201606066
[67]
Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Kim D, Lee T. Adv. Electron. Mater., 2016, 2(12): 1600356.

doi: 10.1002/aelm.201600356
[68]
Han J W, Kim B, Li J, Meyyappan M. Appl. Phys. Lett., 2013, 102(19): 193104.

doi: 10.1063/1.4805025
[69]
Guan X, Wang Z Y, Zhao W Y, Huang H Y, Wang S P, Zhang Q, Zhong D X, Lin W E, Ding N, Peng Z C. ACS Appl. Mater. Interfaces, 2020, 12(23): 26137.

doi: 10.1021/acsami.0c03326
[70]
Ma Z H, Meng B, Wang Z Y, Yuan C C, Liu Z W, Zhang W G, Peng Z C. Nano Energy, 2020, 78: 105216.

doi: 10.1016/j.nanoen.2020.105216
[71]
Zhao T T, Li T K, Chen L L, Yuan L, Li X F, Zhang J H. ACS Appl. Mater. Interfaces, 2019, 11(32): 29466.

doi: 10.1021/acsami.9b09265
[72]
Jung Y, Lee W, Jung K, Park B, Park J, Ko J, Cho H. Polymers, 2020, 12(6): 1412.

doi: 10.3390/polym12061412
[73]
Zu G Q, Kanamori K, Maeno A, Kaji H, Nakanishi K. Angew. Chem. Int. Ed., 2018, 57(31): 9722.

doi: 10.1002/anie.201804559
[74]
Han S B, Alvi N U H, Granlöf L, Granberg H, Berggren M, Fabiano S, Crispin X. Adv. Sci., 2019, 6(8): 1802128.

doi: 10.1002/advs.201802128
[75]
Chen Y P, Hu L T, Li C C, Dang B K, Sun Q F, Zhai T Y, Li H Q. InfoMat, 2020, 2(6): 1225.

doi: 10.1002/inf2.12075
[76]
Gao Y, Xu M D, Yu G H, Tan J P, Xuan F Z. Sens. Actuat. A Phys., 2019, 299: 111625.

doi: 10.1016/j.sna.2019.111625
[77]
Yu L H, Li W P, Wei C H, Yang Q F, Shao Y L, Sun J Y. Nano Micro Lett., 2020, 12(1): 143.
[78]
Orangi J, Hamade F, Davis V A, Beidaghi M. ACS Nano, 2020, 14(1): 640.

doi: 10.1021/acsnano.9b07325 pmid: 31891247
[79]
Yang W Z, Liu Y, Xu W, Nie H Y. IEEE Sens. J., 2021, 21(9): 10473.

doi: 10.1109/JSEN.2021.3060281
[80]
Chen Y X, Deng Z R, Ri O Y, Zheng R H, Jiang Z Q, Bai H, Xue H. Nano Energy, 2021, 84: 105866.

doi: 10.1016/j.nanoen.2021.105866
[81]
Wang Z Y, Guan X, Huang H Y, Wang H F, Lin W E, Peng Z C. Adv. Funct. Mater., 2019, 29(11): 1970067.

doi: 10.1002/adfm.201970067
[82]
Zhao W Y, Wang Z Y, Zhang J P, Wang X P, Xu Y T, Ding N, Peng Z C. Adv. Mater. Technol., 2021, 6(8): 2001218.

doi: 10.1002/admt.202001218
[83]
Wang H H, Yang H M, Zhang S, Zhang L, Li J S, Zeng X Q. Adv. Mater. Technol., 2019, 4(9): 1900147.

doi: 10.1002/admt.201900147
[84]
Zhou Q, Ji B, Wei Y Z, Hu B, Gao Y B, Xu Q S, Zhou J, Zhou B P. J. Mater. Chem. A, 2019, 7(48): 27334.

doi: 10.1039/C9TA10489E
[85]
Mo L X, Meng X Y, Zhao J, Pan Y Q, Sun Z C, Guo Z X, Wang W, Peng Z C, Shang C, Han S B, Hu K, Cao M J, Chen Y J, Xin Z Q, Lu J S, Li L H. Flex. Print. Electron., 2021, 6(1): 014001.

doi: 10.1088/2058-8585/abe842
[86]
Xiao Y, Jiang S W, Liu P, Xue Z W, Zhu Y Y, Yu J T, Qiu J, Zhang W L. Smart Mater. Struct., 2019, 28(10): 105027.

doi: 10.1088/1361-665X/ab3af6
[87]
Lauter U, Kantor S W, Schmidt-Rohr K, MacKnight W J. Macromolecules, 1999, 32(10): 3426.

doi: 10.1021/ma981292f
[88]
Jing X, Ma Z P, Antwi-Afari M F, Wang L, Li H, Mi H Y, Feng P Y, Liu Y J. Ind. Eng. Chem. Res., 2021, 60(28): 10419.

doi: 10.1021/acs.iecr.1c01575
[89]
Liu F, Han F, Ling L, Li J H, Zhao S F, Zhao T, Liang X W, Zhu D L, Zhang G P, Sun R, Ho D, Wong C P. Chem. Eur. J., 2018, 24(63): 16823.

doi: 10.1002/chem.201803369
[90]
Peng Y X, Zhou J Z, Song X, Pang K, Samy A, Hao Z M, Wang J. Sensors, 2021, 21(2): 485.

doi: 10.3390/s21020485
[91]
Muthuraj R, Sachan A, Castro M, Feller J F, Seantier B, Grohens Y. J. Renew. Mater., 2018, 6(3): 277.
[92]
Jiang S W, Yu J T, Xiao Y, Zhu Y Y, Zhang W L. ACS Appl. Mater. Interfaces, 2019, 11(22): 20500.

doi: 10.1021/acsami.9b02659
[93]
Lin W E, He C B, Huang H Y, Zhao W Y, Qiu Y B, Guan X, Zhang Q, Wang Z Y, Peng Z C. Adv. Mater. Technol., 2020, 5(5): 2000008.
[94]
Wu J N, Yao Y G, Zhang Y H, Shao T Y, Wu H, Liu S Y, Li Z, Wu L M. Nanoscale, 2020, 12(41): 21198.

doi: 10.1039/D0NR06386J
[95]
Shi R L, Lou Z, Chen S, Shen G Z. Sci. China Mater., 2018, 61(12): 1587.

doi: 10.1007/s40843-018-9267-3
[96]
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2020, 12(19): 22212.

doi: 10.1021/acsami.0c05819
[97]
Cheng Y F, Ma Y N, Li L Y, Zhu M, Yue Y, Liu W J, Wang L F, Jia S F, Li C, Qi T Y, Wang J B, Gao Y H. ACS Nano, 2020, 14(2): 2145.

doi: 10.1021/acsnano.9b08952
[98]
Han S B, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X. Adv. Funct. Mater., 2017, 27(44): 1703549.

doi: 10.1002/adfm.201703549
[99]
Wang L, Xu T, Zhang X. TrAC Trends in Analytical Chemistry, 2021, 134.
[100]
Li Z K, Zhang S M, Chen Y H, Ling H N, Zhao L B, Luo G X, Wang X C, Hartel M C, Liu H, Xue Y M, Haghniaz R, Lee K J, Sun W J, Kim H, Lee J M, Zhao Y C, Zhao Y P, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci M R, Jiang Z D, Khademhosseini A. Adv. Funct. Mater., 2020, 30(49): 2070326.

doi: 10.1002/adfm.202070326
[101]
Chang H, Kim S, Kang T H, Lee S W, Yang G T, Lee K Y, Yi H. ACS Appl. Mater. Interfaces, 2019, 11(35): 32291.

doi: 10.1021/acsami.9b10194
[102]
Asadnia M, Kottapalli A G P, Shen Z Y, Miao J M, Triantafyllou M. IEEE Sens. J., 2013, 13(10): 3918.

doi: 10.1109/JSEN.2013.2259227
[103]
Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F, Wang Z L. Nat. Commun., 2018, 9: 244.

doi: 10.1038/s41467-017-02685-9
[104]
Zhang T, Li Z Y, Li K, Yang X N. Adv. Mater. Technol., 2019, 4(12): 1900679.

doi: 10.1002/admt.201900679
[105]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H, Bao Z N. Adv. Mater., 2015, 27(4): 634.

doi: 10.1002/adma.201403807
[106]
Mao R W, Yao W Q, Qadir A, Chen W Q, Gao W W, Xu Y, Hu H. Sens. Actuat. A Phys., 2020, 312: 112144.

doi: 10.1016/j.sna.2020.112144
[107]
Ma L Q, Yu X C, Yang Y Y, Hu Y G, Zhang X Y, Li H Y, Ouyang X, Zhu P L, Sun R, Wong C P. J. Materiomics, 2020, 6(2): 321.

doi: 10.1016/j.jmat.2019.12.008
[108]
Yin R Y, Wang D P, Zhao S F, Lou Z, Shen G Z. Adv. Funct. Mater., 2021, 31(11): 2008936.

doi: 10.1002/adfm.202008936
[109]
Zhang H J, Han W Q, Xu K, Zhang Y, Lu Y F, Nie Z T, Du Y H, Zhu J X, Huang W. Nano Lett., 2020, 20, 3449.
[110]
Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J, Ahn J, Cho I, Jeong Y, Oh Y, Park I. ACS Appl. Mater. Interfaces, 2020, 12(1): 1698.

doi: 10.1021/acsami.9b20097
[1] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[2] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[3] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[4] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[5] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[6] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[7] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[8] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[9] Yaoxu Xiong, Yougen Hu, Pengli Zhu, Rong Sun, Ching-Ping Wong. Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures [J]. Progress in Chemistry, 2019, 31(6): 800-810.
[10] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[11] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[12] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.
[13] Yang Lujiao, Zhang Ying, Cheng Xuan. Performance and Structure of Polymer Derived SiBCN Ceramics [J]. Progress in Chemistry, 2016, 28(2/3): 308-316.
[14] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[15] Xu Yuxing Tan Qiangqiang Tang Zilong Zhang Zhongtai Yuan Zhangfu. WO3-Based Gas Sensors [J]. Progress in Chemistry, 2009, 21(12): 2734-2743.