中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 487-498 DOI: 10.7536/PC211124   Next Articles

• Invited Review •

The Progress of Room Temperature Phosphorescent Gel

Jinfeng Wang1, Aisen Li2, Zhen Li1,2,3()   

  1. 1 Institute of Molecular Aggregation Science, Tianjin University,Tianjin 300072, China
    2 Joint School of National University of Singapore and Tianjin University,International Campus of Tianjin University, Fuzhou 350207, China
    3 College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
  • Received: Revised: Online: Published:
  • Contact: Zhen Li
  • Supported by:
    Starting Foundation of Tianjin University and the National Natural Science Foundation of China(22105143)
Richhtml ( 272 ) PDF ( 2035 ) Cited
Export

EndNote

Ris

BibTeX

Room temperature phosphorescence (RTP) has arouse much interest due to their unique luminescence properties and wide potential applications in optoelectronics, sensing, bio-imaging and security devices. In recent years, various methods to promote phosphorescence emission at room temperature have been explored. At present, the commonly used methods for constructing room temperature phosphorescent materials with long lifetime and high quantum yield mainly center on the design of phosphorescent molecular structure and the construction of phosphorescent protective matrix. Supramolecular gel, as a new matrix for inducing room temperature phosphorescence, has attracted much attention owing to the advantages of three-dimensional network structure, thermal reversibility and stimulus responsiveness. This review focuses on metal-free room temperature phosphorescent gel and metal-containing room temperature phosphorescent gel, and summarizes current research status in recent years. In addition, a brief prospect for the future development of room temperature phosphorescent gel research is provided.

Contents

1 Introduction

2 Metal-free room temperature phosphorescent gel

3 Metal-containing room temperature phosphorescent gel

4 Conclusion and outlook

Fig.1 RTP gel based on cyclodextrin. (a) Construction of the supramolecular polymeric hydrogel by host-guest interaction between poly-β-CD /poly-α-BrNp polymers and its rapidly self-healing property[41]; (b) Schematic representation of the CD-RTP gel based on host-guest interaction between poly-BrNpA and γ-CD[42]; (c) Schematic representation of xerogel formation and reversible white-light emission switching and schematic of the possible emission switch processes based on cyclodextrin polypseudorotaxane xerogel[43]
Fig.2 (a) Polychromatic luminescence properties of gels based on the cucurbit[8]uril (CB[8]) and triazine derivative (TBP); (b) Photographs of multicolor hydrogels under daylight and 365 nm UV light; TBP-CB[8] complex, bright field, and merge confocal microscopic images of HeLa cells cultured with a mixture of TBP with 1.0 equiv CB[8] (10 mm)[44]
Fig.3 RTP gels based on supramolecular self-assembly. (a) Schematic illustration of 3-BrQ RTP induced by DBS supramolecular gels[46]; (b) “On-off” reversible RTP of 3-BrQ in DBS gels (black line) and NaDC solutions (red line) at 10 and 80 ℃[46]; (c) Schematic illustration of BrQ-DBC gel formation and responsiveness of temperature, pH and redox[47]; (d) RTP spectra of BrQ-DBC gels during a cycle of heating and cooling[47]; (e) Chemical structure of PtOEP, DPA and LBG[48]; (f) Normalized absorption (solid line) and emission (dashed line) spectra of the PtOEP/LBG binary gel (red line) and the DPA/LBG binary gel (black line)[48]
Fig.4 RTP gel based on electrostatic interaction. (a) Construction of the AC/SCD?PYCl hybrid hydrogel and xerogel[49];(b) photoluminescence spectra of the AC/SCD?PYCl hydrogel and xerogel, phosphorescence decay curve for the xerogel, effect of humidity on the phosphorescence spectrum of the AC/SCD?PYCl gel; (c) Molecular structures of pNDI and BrNDI, schematic diagram of Laponite (LP) structure and schematic of the proposed ionic hybrid self-assembly of exfoliated LP nanoplates[50]; (d) Molecular structure and schematic representation of CPthBr, CB[7] and LP, normalized gated emission spectra and delayed fluorescence lifetime decay plot of 10:1 CPthBr-SRG-LP and CPthBr-SR101-LP hybrid hydrogels[51]
Fig.5 Schematic representation of molecular structure of gel polymers g-1IBDP and g-2IBDP[52]
Fig.6 (a) Chemical structures of Pd-mTCPP, PEG-diamines and generation of hydrogel[53]; (b) Hydrogel was implanted subcutaneously in a BALB/c mouse and imaged every 10 d[53]; (c) Schematic illustrating RTP of Pd-TCPP induced by the dual-ordered structure of G/DBC gels[54]; (d) Schematic illustration of Al3+ enhanced RTP of Pd-porphyrin resided in micelle-hybrid supramolecular gels[57]; (e) Schematic illustration of enhancing RTP of Pd-TCPP in M/DBC gels under UV irradiation[58]; (f) RTP spectra of Pd-TCPP in M/DBC gels under different conditions and RTP decay curves of Pd-TCPP in M/DBC gels[58]
Fig.7 (a) Schematic illustrating of RTP gel formation based on Pt-acetylide complex; (b) Phosphorescent quantum yield[59]; (c) Structure of 8-quinolinol platinum(Ⅱ)[60]; (d) Luminescence spectra of the 1Pt in solution (solid) and gel state (dashed) as well as optical and CLSM images[60]
Fig.8 (a) Molecular structure of phosphor and polymer; (b) Photoluminescence spectra for different forms of phosphorescent hydrogels; (c) Temperature-dependent photoluminescence enhancement of the hybrid microgel upon heating from room temperature (RT) to 37 ℃[62]
Fig.9 (a) Structures of complexes Au1~Au5; (b) Emission of an aerated DMSO solution of Au2 upon continuous excitation at 365 nm at 298 K and its photographs; (c) Photographic description on the writing-erasing-rewriting processes with a 365 nm UV lamp on a piece of DMSO gel containing Au2 at 298 K; (d) Emission of DMSO gel containing Au2 upon continuous excitation at 365 nm[63]
Fig.10 (a) Illustration of the synthesis of Ag9NCs and their emission photographs; (b) Time-dependent optical properties of the MOG after addition of EtOH; (c) Illustration of the time-dependent gelation process; (d) Emission of the MOG under different temperature, TEM image and the reversible change of the PL intensity of the MOG[64]
[1]
Li J A, Zhou J H, Mao Z, Xie Z L, Yang Z, Xu B J, Liu C, Chen X, Ren D Y, Pan H, Shi G, Zhang Y, Chi Z G. Angew. Chem. Int. Ed., 2018, 57(22): 6449.

doi: 10.1002/anie.201800762
[2]
Zhou X, Du F Y, Xie S M, Huang Y, Wang E J, Wang S M. New Chemical Materials, 2021, 49(2):204.
(周徐, 杜飞跃, 谢叔媚, 黄茵, 王二静, 王世敏. 化工新型材料, 2021, 49(2):204.).
[3]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y
[4]
He Z K, Zhao W J, Lam J W Y, Peng Q, Ma H L, Liang G D, Shuai Z G, Tang B Z. Nat. Commun., 2017, 8: 416.

doi: 10.1038/s41467-017-00362-5
[5]
Gong Y Y, Zhao L F, Peng Q, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.

doi: 10.1039/C5SC00253B
[6]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259
[7]
Yang X G, Zhai Z M, Liu X Y, Li J Y, Li F F, Ma L F. Dalton Trans., 2020, 49(3): 598.

doi: 10.1039/C9DT04046C
[8]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984 pmid: 21336325
[9]
Lee D, Bolton O, Kim B C, Youk J H, Takayama S, Kim J. J. Am. Chem. Soc., 2013, 135(16): 6325.

doi: 10.1021/ja401769g
[10]
Bolton O, Lee D, Jung J, Kim J. Chem. Mater., 2014, 26(22): 6644.

doi: 10.1021/cm503678r
[11]
Kwon M S, Lee D, Seo S, Jung J, Kim J. Angew. Chem. Int. Ed., 2014, 53(42): 11177.

doi: 10.1002/anie.201404490
[12]
Lee D, Ma X, Jung J, Jeong E J, Hashemi H, Bregman A, Kieffer J, Kim J. Phys. Chem. Chem. Phys., 2015, 17(29): 19096.

doi: 10.1039/C5CP01003A
[13]
Yang J, Gao H Q, Wang Y S, Yu Y, Gong Y B, Fang M M, Ding D, Hu W P, Tang B Z, Li Z. Mater. Chem. Front., 2019, 3(7): 1391.

doi: 10.1039/C9QM00108E
[14]
Yang J, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6 pmid: 29483501
[15]
Liao Q Y, Gao Q H, Wang J Q, Gong Y B, Peng Q, Tian Y, Fan Y Y, Guo H J, Ding D, Li Q Q, Li Z. Angew. Chem. Int. Ed., 2020, 59(25): 9946.

doi: 10.1002/anie.201916057
[16]
Liu J M, Lin L P, Wang H X, Lin S Q, Zhang L H, Cai W L, Lin X, Pan Y Z, Wang X X, Li Z M, Jiao L, Cui M L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2011, 84(1): 221.

doi: 10.1016/j.saa.2011.09.031
[17]
Huang J H, Lin W Y. J. Chin. Chemical Soc., 2001, 48(6A): 971.

doi: 10.1002/jccs.200100142
[18]
Zhu Y X, Peng J H, Zhang Y. Anal. Chimica Acta, 2007, 583(2): 364.

doi: 10.1016/j.aca.2006.10.055
[19]
Ma X, Cao J J, Wang Q C, Tian H. Chem. Commun., 2011, 47(12): 3559.

doi: 10.1039/c0cc05488g
[20]
Gong Y F, Chen H, Ma X, Tian H. ChemPhysChem, 2016, 17(12): 1934.

doi: 10.1002/cphc.201500901
[21]
Ma L W, Sun S Y, Ding B B, Ma X, Tian H. Adv. Funct. Mater., 2021, 31(17): 2010659.

doi: 10.1002/adfm.202010659
[22]
Wu B, Guo N N, Xu X T, Xing Y M, Shi K, Fang W H, Wang G J. Adv. Optical Mater., 2020, 8(22): 2001192.

doi: 10.1002/adom.202001192
[23]
Gan N, Shi H F, An Z F, Huang W. Adv. Funct. Mater., 2018, 28(51): 1802657.

doi: 10.1002/adfm.201802657
[24]
Li J X, Yang B H, Liu H Y. Advances in Analytical Chemistry, 2020, 10: 65.

doi: 10.12677/AAC.2020.103010
(李佳璇, 杨宝华, 刘红云. 分析化学进展, 2020, 10: 65.).
[25]
Chen X L, Liu K Q, Fang Y. Progress in Chemistry, 2020, 32(7): 861.
(陈香李, 刘凯强, 房喻. 化学进展, 2020, 32(7): 861.).

doi: 10.7536/PC200214
[26]
Ma M F, Luan T X, Xing P Y, Li Z L, Chu X X, Hao A Y. Progress in Chemistry, 2019, 31(2/3): 225.
(马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 化学进展, 2019, 31(2/3): 225.).
[27]
Gao R, Kodaimati M S, Yan D P. Chem. Soc. Rev., 2021, 50(9): 5564.

doi: 10.1039/D0CS01463J
[28]
Zhao W J, He Z K, Tang B Z. Nat. Rev. Mater., 2020, 5(12): 869.

doi: 10.1038/s41578-020-0223-z
[29]
Mukherjee S, Thilagar P. Chem. Commun., 2015, 51(55): 10988.

doi: 10.1039/C5CC03114A
[30]
Yang J, Fang M M, Li Z. Acc. Mater. Res., 2021, 2(8): 644.

doi: 10.1021/accountsmr.1c00084
[31]
Yin C J, Ma X. Chemical World, 2022, 63(1): 1.
(殷晨佳, 马骧. 化学世界, 2022, 63(1): 1.).
[32]
Yan Z A, Zou L, Ma X. Chinese Journal of Organic Chemistry, 2020, 40(7): 1814.

doi: 10.6023/cjoc202004003
(严子昂, 邹雷, 马骧. 有机化学, 2020, 40(7): 1814.).
[33]
Zhang Z Y, Chen Y, Liu Y. Angew. Chem. Int. Ed., 2019, 58(18): 6028.

doi: 10.1002/anie.201901882
[34]
Wei P F, Zhang X P, Liu J K, Shan G G, Zhang H K, Qi J, Zhao W J, Sung H H Y, Williams I D, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2020, 59(24): 9293.

doi: 10.1002/anie.201912155
[35]
Montes-Navajas P, Teruel L, Corma A, Garcia H. Chem. Eur. J., 2008, 14(6): 1762.

doi: 10.1002/chem.200701353
[36]
Zhang T, Ma X, Wu H W, Zhu L L, Zhao Y L, Tian H. Angew. Chem. Int. Ed., 2020, 59(28): 11206.

doi: 10.1002/anie.201915433 pmid: 31876988
[37]
Qu G J, Zhang Y P, Ma X. Chin. Chemical Lett., 2019, 30(10): 1809.

doi: 10.1016/j.cclet.2019.07.042
[38]
Li D F, Lu F F, Wang J, Hu W D, Cao X M, Ma X, Tian H. J. Am. Chem. Soc., 2018, 140(5): 1916.

doi: 10.1021/jacs.7b12800
[39]
Li T, Ma X. Dyes Pigments, 2018, 148: 306.

doi: 10.1016/j.dyepig.2017.09.036
[40]
Turro N J, Bolt J D, Kuroda Y, Tabushi I. Photochem. Photobiol., 1982, 35(1): 69.

doi: 10.1111/j.1751-1097.1982.tb03812.x
[41]
Chen H, Ma X, Wu S F, Tian H. Angew. Chem. Int. Ed., 2014, 53(51): 14149.

doi: 10.1002/anie.201407402 pmid: 25323299
[42]
Chen H, Xu L, Ma X, Tian H. Polym. Chem., 2016, 7(24): 3989.

doi: 10.1039/C6PY00703A
[43]
Li J J, Zhang H Y, Zhang Y, Zhou W L, Liu Y. Adv. Optical Mater., 2019, 7(20): 1900589.

doi: 10.1002/adom.201900589
[44]
Wang J, Huang Z Z, Ma X, Tian H. Angew. Chem. Int. Ed., 2020, 59(25): 9928.

doi: 10.1002/anie.201914513 pmid: 31799773
[45]
Zhou Y, Zhao D, Li Z Y, Liu G, Feng S H, Zhao B T, Ji B M. Dyes Pigments, 2021, 195: 109725.

doi: 10.1016/j.dyepig.2021.109725
[46]
Wang H, Wang H, Yang X Q, Wang Q, Yang Y J. Langmuir, 2015, 31(1): 486.

doi: 10.1021/la5040323
[47]
Yuan J H, Dong X L, Zhang B B, Zhou Q, Lu S, Wang Q, Liao Y G, Yang Y J, Wang H. Dyes Pigments, 2020, 181: 108506.

doi: 10.1016/j.dyepig.2020.108506
[48]
Duan P F, Yanai N, Nagatomi H, Kimizuka N. J. Am. Chem. Soc., 2015, 137(5): 1887.

doi: 10.1021/ja511061h
[49]
Fan W T, Chen Y, Niu J, Su T, Li J J, Liu Y. Adv. Photonics Res., 2021, 2(1): 2000080.

doi: 10.1002/adpr.202000080
[50]
Kuila S M, Rao K V, Garain S, Samanta P K, Das S, Pati S K, Eswaramoorthy M, George S J. Angew. Chem. Int. Ed., 2018, 57(52): 17115.

doi: 10.1002/anie.201810823
[51]
Garain S, Garain B C, Eswaramoorthy M, Pati S K, George S J. Angew. Chem. Int. Ed., 2021, 60(36): 19720.

doi: 10.1002/anie.202107295
[52]
Zhang T, Ma X, Tian H. Chem. Sci., 2020, 11(2): 482.

doi: 10.1039/c9sc05502a pmid: 32190268
[53]
Huang H Y, Song W T, Chen G Y, Reynard J M, Ohulchanskyy T Y, Prasad P N, Bright F V, Lovell J F. Adv. Healthcare Mater., 2014, 3(6): 891.

doi: 10.1002/adhm.201300483
[54]
Xue R R, Wei S S, Dong X L, Zhu T Y, Yuan J H, Feng L, Wang Q, Yang Y J, Wang H. Appl. Organomet. Chem., 2019, 33(5): e4845.

doi: 10.1002/aoc.4845
[55]
Liu H, Hao X, Duan C H, Yang H, Lv Y, Xu H J, Wang H D, Huang F, Xiao D B, Tian Z Y. Nanoscale, 2013, 5(19): 9340.

doi: 10.1039/c3nr02522e
[56]
Zhang Z F, Miao Y M, Lian L W, Yan G Q. Anal. Biochem., 2015, 489: 17.

doi: 10.1016/j.ab.2015.08.002
[57]
Xue R R, Feng L, Wei S S, Dong X L, Wang Q, Yang Y J, Liao Y G, Wang H. Talanta, 2019, 194: 183.

doi: 10.1016/j.talanta.2018.10.018
[58]
Yuan J H, Zhou Q, Dong X L, Zhang B B, Wang Q, Yang Y J, Liao Y G, Wang H. Dyes Pigments, 2019, 170: 107654.

doi: 10.1016/j.dyepig.2019.107654
[59]
Russell G M, Inamori D, Masai H, Tamaki T, Terao J. Polym. Chem., 2019, 10(39): 5280.

doi: 10.1039/C9PY00700H
[60]
Shirakawa M, Fujita N, Tani T, Kaneko K, Shinkai S. Chem. Commun., 2005(33): 4149.
[61]
Gou F, Cheng J H, Zhang X H, Shen G Y, Zhou X G, Xiang H F. Eur. J. Inorg. Chem., 2016, (30): 4862.
[62]
Marpu S, Hu Z B, Omary M A. Langmuir, 2010, 26(19): 15523.

doi: 10.1021/la101615h
[63]
Wan S G, Lu W. Angew. Chem. Int. Ed., 2017, 56(7): 1784.

doi: 10.1002/anie.201610762
[64]
Xie Z C, Sun P P, Wang Z, Li H G, Yu L Y, Sun D, Chen M J, Bi Y T, Xin X, Hao J C. Angew. Chem. Int. Ed., 2020, 59(25): 9922.

doi: 10.1002/anie.201912201
[65]
Li Q Q, Li Z. Acc. Chem. Res., 2020, 53(4): 962.

doi: 10.1021/acs.accounts.0c00060
[66]
Wang Y S, Yang J, Gong Y X, Fang M M, Li Z, Tang B Z. SmartMat, 2020, 1(1): e1006.
[67]
Yang J, Fang M M, Li Z. Aggregate, 2020, 1(1): 6.

doi: 10.1002/agt2.2
[68]
Yang J, Fang M M, Li Z. InfoMat, 2020, 2(5): 791.

doi: 10.1002/inf2.12107
[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[7] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[10] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[11] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.