中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1228-1241 DOI: 10.7536/PC180201 Previous Articles   Next Articles

• Review •

Dopamine Based Nanomaterials for Biomedical Applications

Hong Li1,2, Yuanyuan Zhao1, Haonan Peng3*   

  1. 1. College of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China;
    2. State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China;
    3. Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21703169, 21603138), the Scientific Research Plan of Shaanxi Province of China(No. 2017JQ2024), and the Scientific Research Program Funded by Shaanxi Provincial Education Department(No. 17JK0600).
PDF ( 1302 ) Cited
Export

EndNote

Ris

BibTeX

Dopamine is a catecholamine that acts as an important neurotransmitter in the nervous system. Since the introduction of the simple preparation method of polydopamine with the oxidative self-polymerization of dopamine, dopamine based nanomaterials have emerged as the novel biomaterials. They have attracted considerable interests in the fields of biosensing, drug delivery, photothermal therapy, antimicrobials, and tissue engineering due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, and strong photothermal conversion capacity. This review summarizes the recent advances on the fabrication, functionalization, and biomedical applications of dopamine based nanomaterials. Firstly, several typical dopamine based nanomaterials are introduced with a discussion of the factors that influence the assembly process. Then detailed elaboration is followed on their applications in biomedical fields, especially in cancer diagnosis and therapy. Finally, the review proposes some research topics for clinical applications of dopamine based nanomaterials.
Contents
1 Introduction
2 Dopamine based nanomaterials
2.1 Nanoparticles
2.2 Microcapsules
2.3 Polydopamine films
2.4 Other materials
3 Biomedical applications
3.1 Biosensing
3.2 Bioimaging
3.3 Drug delivery
3.4 Photothermal therapy
3.5 Theranostics
3.6 Antimicrobials
3.7 Tissue engineering
4 Conclusion and perspective

CLC Number: 

[1] Bibb J A, Snyder G L, Nishi A, Yan Z, Meijer L, Fienberg A A, Tsai L H, Kwon Y T, Girault J A, Czernik A J, Huganir R L, Hemmings H C, Nairn A C, Greengard P. Nature, 1999, 402(6762):669.
[2] Carlsson A, Lindqvist M. Acta Physiol. Scand., 1962, 54:87.
[3] Huang H L, Wu K M, Ma J, Du Y L, Cao C Y, Nie Y Q. Int. Immunopharmacol., 2016, 39:113.
[4] Zhang Q B, Zhang B H, Zhang K Z, Meng X T, Jia Q A, Bu Y, Zhu X D, Ma D N, Ye B G, Zhang N, Ren Z G, Sun H C, Tang Z Y. Oncogene, 2016, 35(31):4122.
[5] Akbari M E, Kashani F L, Ahangari G, Pornour M, Hejazi H, Nooshinfar E, Kabiri M, Hosseini L. Breast Cancer, 2016, 23(6):901.
[6] Borcherding D C, Tong W, Hugo E R, Barnard D F, Fox S, LaSance K, Shaughnessy E, Ben-Jonathan N. Oncogene, 2016, 35(24):3103.
[7] Basu S, Nagy J A, Pal S, Vasile E, Eckelhoefer I A, Bliss V S, Manseau E J, Dasgupta P S, Dvorak H F, Mukhopadhyay D. Nat. Med., 2001, 7(5):569.
[8] Moreno-Smith M, Lu C, Shahzad M M K, Pena G N A, Allen J K, Stone R L, Mangala L S, Han H D, Kim H S, Farley D, Berestein G L, Cole S W, Lutgendorf S K, Sood A K. Clin. Cancer Res., 2011, 17(11):3649.
[9] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849):426.
[10] Lynge M E, van der Westen R, Postma A, Stadler B. Nanoscale, 2011, 3(12):4916.
[11] Liu Y L, Ai K L, Lu L H. Chem. Rev., 2014, 114(9):5057.
[12] 赵晨旭(Zhao C X), 谢银红(Xie Y H), 廖芝建(Liao Z J), 秦振立(Qin Z L), 杜思南(Du S N), 左芳(Zuo F), 赵志刚(Zhao Z G). 高分子通报(Chinese Polymer Bulletin), 2015, 12(004):28.
[13] 廉成波(Lian C B), 郑爱隔(Zheng A G), 史新妍(Shi X Y). 合成橡胶工业(China Synthetic Rubber Industry), 2014, 37(4):327.
[14] Liu M Y, Zeng G J, Wang K, Wan Q, Tao L, Zhang X Y, Wei Y. Nanoscale, 2016, 8(38):16819.
[15] Batul R, Tamanna T, Khaliq A, Yu A. Biomater. Sci., 2017, 5(7):1204.
[16] Perikamana S K M, Lee J, Lee Y B, Shin Y M, Lee E J, Mikos A G, Shin H. Biomacromolecules, 2015, 16(9):2541.
[17] 刘宗光(Liu Z G), 屈树新(Qu S X), 翁杰(Weng J). 化学进展(Progress in Chemistry), 2015, 27(2/3):212.
[18] Liu Y L, Ai K L, Liu J H, Deng M, He Y Y, Lu L H. Adv. Mater., 2013, 25(9):1353.
[19] Xie Y, Lin X Y, Huang Y S, Pan R J, Zhu Z, Zhou L J, Yang C Y J. Chem. Commun., 2015, 51(11):2156.
[20] Wang Q, Yin B C, Ye B C. Biosens. Bioelectron., 2016, 80:366.
[21] Liu F Y, He X X, Zhang J P, Chen H D, Zhang H M, Wang Z X. J. Mater. Chem. B, 2015, 3(33):6731.
[22] Zheng Q S, Lin T R, Wu H Y, Guo L Q, Ye P R, Hao Y L, Guo Q Q, Jiang J Z, Fu F F, Chen G N. Int. J. Pharm., 2014, 463(1):22.
[23] Xiong W, Peng L X, Chen H B, Li Q. Int. J. Nanomed., 2015, 10:2985.
[24] Ju K Y, Lee S, Pyo J, Choo J, Lee J K. Small, 2015, 11(1):84.
[25] Wang S W, Zhao X Y, Wang S C, Qian J, He S L. ACS Appl. Mater. Interfaces, 2016, 8(37):24368.
[26] Lin Q K, Huang X J, Tang J M, Han Y M, Chen H. J. Nanopart. Res., 2013, 15(12):2144.
[27] Si J Y, Yang H. Mater. Chem. Phys., 2011, 128(3):519.
[28] Liu R, Guo Y L, Odusote G, Qu F L, Priestley R D. ACS Appl. Mater. Interfaces, 2013, 5(18):9167.
[29] Wu M, Zhang D, Zeng Y Y, Wu L J, Liu X L, Liu J F. Nanotechnology, 2015, 26(11):115102.
[30] Wu M, Wang Q T, Zhang D, Liao N S, Wu L J, Huang A M, Liu X L. Colloids Surf. B, 2016, 141:467.
[31] Xuan M J, Zhao J, Shao J X, Du C L, Cui W, Duan L, Qi W, Li J B. J. Colloid Interf. Sci., 2017, 487:107.
[32] Jia Y, Li J B. Chem. Rev., 2015, 115(3):1597.
[33] Feng X Y, Du C L, Li J B. Chem. Rec., 2016, 16(4):1991.
[34] Postma A, Yan Y, Wang Y J, Zelikin A N, Tjipto E, Caruso F. Chem. Mater., 2009, 21(14):3042.
[35] Chen X, Yan Y, Muellner M, van Koeverden M P, Noi K F, Zhu W, Caruso F. Langmuir, 2014, 30(10):2921.
[36] Liu Q, Yu B, Ye W C, Zhou F. Macromol. Biosci., 2011, 11(9):1227.
[37] Li H, Jia Y, Feng X Y, Li J B. J. Colloid Interf. Sci., 2017, 487:12.
[38] Zhang L, Shi J F, Jiang Z Y, Jiang Y J, Qiao S Z, Li J, Wang R, Meng R J, Zhu Y Y, Zheng Y. Green Chem., 2011, 13(2):300.
[39] Cui J W, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Biomacromolecules, 2012, 13(8):2225.
[40] Yeroslavsky G, Richman M, Dawidowicz L O, Rahimipour S. Chem. Commun., 2013, 49(51):5721.
[41] Ni Y Z, Jiang W F, Tong G S, Chen J X, Wang J, Li H M, Yu C Y, Huang X H, Zhou Y F. Org. Biomol. Chem., 2015, 13(3):686.
[42] Jiang J H, Zhu L P, Zhu L J, Zhu B K, Xu Y Y. Langmuir, 2011, 27(23):14180.
[43] Tsai W B, Chen W T, Chien H W, Kuo W H, Wang M J. J. Biomater. Appl., 2014, 28(6):837.
[44] Shin Y M, Lee Y B, Kim S J, Kang J K, Park J C, Jang W, Shin H. Biomacromolecules, 2012, 13(7):2020.
[45] Wang X B, Miao J J, Xia Q, Yang K, Huang X H, Zhao W B, Shen J. Electrochim. Acta, 2013, 112:473.
[46] Zhang P, He M, Zeng Y. Lab on a Chip, 2016, 16(16):3033.
[47] Wu S J, Cai C C, Cheng J, Cheng M, Zhou H B, Deng J L. Anal. Chim. Acta, 2016, 935:113.
[48] Kohri M, Nannichi Y, Kohma H, Abe D, Kojima T, Taniguchi T, Kishikawa K. Colloids Surf. A, 2014, 449:114.
[49] Yu X, Fan H L, Wang L, Jin Z X. Angew. Chem. Int. Ed., 2014, 53(46):12600.
[50] Fan H L, Yu X, Liu Y, Shi Z J, Liu H H, Nie Z X, Wu D C, Jin Z X. Soft Matter, 2015, 11(23):4621.
[51] Ma S, Qi Y X, Jiang X Q, Chen J Q, Zhou Q Y, Shi G, Zhang M. Anal. Chem., 2016, 88(23):11647.
[52] Hong S, Schaber C F, Dening K, Appel E, Gorb S N, Lee H. Adv. Mater., 2014, 26(45):7581.
[53] Zhang Y, Thingholm B, Goldie K N, Ogaki R, Stadler B. Langmuir, 2012, 28(51):17585.
[54] Li H, Jia Y, Wang A H, Cui W, Ma H C, Feng X Y, Li J B. Chem. Eur. J., 2014, 20(2):499.
[55] Liu J Y, Wang J, Wang T S, Li D, Xi F N, Wang J, Wang E K. Biosens. Bioelectron., 2015, 65:281.
[56] Egeblad M, Werb Z. Nat. Rev. Cancer, 2002, 2(3):161.
[57] Zhu L, Kate P, Torchilin V P. ACS Nano, 2012, 6(4):3491.
[58] Yang G H, Li L L, Rana R K, Zhu J J. Carbon, 2013, 61:357.
[59] Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang Y L, Wang Q. Nano Lett., 2006, 6(8):1632.
[60] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H. Adv. Funct. Mater., 2010, 20(3):453.
[61] Qiang W B, Li W, Li X B, Chen X, Xu D K. Chem. Sci., 2014, 5(8):3018.
[62] Liu Q, Pu Z H, Asiri A M, Al-Youbi A O, Sun X P. Sensor. Actuat. B Chem., 2014, 191:567.
[63] Wang D, Chen C, Ke X B, Kang N, Shen Y Q, Liu Y L, Zhou X, Wang H J, Chen C Q, Ren L. ACS Appl. Mater. Interfaces, 2015, 7(5):3030.
[64] Chandra S, Das P, Bag S, Laha D, Pramanik P. Nanoscale, 2011, 3(4):1533.
[65] Yan L L, Zhang Y, Xu B, Tian W J. Nanoscale, 2016, 8(5):2471.
[66] Zhang X Y, Wang S Q, Xu L X, Feng L, Ji Y, Tao L, Li S X, Wei Y. Nanoscale, 2012, 4(18):5581.
[67] Kircher M F, de la Zerda A, Jokerst J V, Zavaleta C L, Kempen P J, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan C W, Mellinghoff I K, Holland E C, Gambhir S S. Nat. Med., 2012, 18(5):829.
[68] Ju K Y, Lee J W, Im G H, Lee S, Pyo J, Park S B, Lee J H, Lee J K. Biomacromolecules, 2013, 14(10):3491.
[69] Huang Z W, Lui H, Chen X K, Alajlan A, McLean D I, Zeng H S. J. Biomed. Opt., 2004, 9(6):1198.
[70] Popat A, Ross B P, Liu J, Jambhrunkar S, Kleitz F, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(50):12486.
[71] Ho C C, Ding S J. J. Mater. Sci. Mater. Med., 2013, 24(10):2381.
[72] Zhan H L, Jagtiani T, Liang J F. Eur. J. Pharm. Biopharm., 2017, 114:221.
[73] Zong W, Hu Y, Su Y C, Luo N, Zhang X N, Li Q C, Han X J. J. Microencapsul., 2016, 33(3):257.
[74] Xu G J, Yu X H, Zhang J X, Sheng Y C, Liu G, Tao W, Mei L. Int. J. Nanomed., 2016, 11:2953.
[75] Tao W, Zeng X W, Wu J, Zhu X, Yu X H, Zhang Y, Zhang J X, Liu G, Mei L. Theranostics, 2016, 6(4):470.
[76] Hashemi-Moghaddam H, Kazemi-Bagsangani S, Jamili M, Zavareh S. Int. J. Pharmaceut., 2016, 497(1/2):228.
[77] Zavareh S, Mahdi M, Erfanian S, Hashemi-Moghaddam H. Cancer Chemoth. Pharm., 2016, 78(5):1073.
[78] Xue J H, Zheng W C, Wang L, Jin Z X. ACS Biomater. Sci. Eng., 2016, 2(4):489.
[79] Tang W T, Liu B, Wang S P, Liu T L, Fu C H, Ren X L, Tan L F, Duan W B, Meng X W. RSC Adv., 2016, 6(39):32434.
[80] Dai Y L, Xu C, Sun X L, Chen X Y. Chem. Soc. Rev., 2017, 46(12):3830.
[81] Ghavami-Nejad A, Sasikala A R K, Unnithan A R, Thomas R G, Jeong Y Y, Vatankhah-Varnoosfaderani M, Stadler F J, Park C H, Kim C S. Adv. Funct. Mater., 2015, 25(19):2867.
[82] Sasikala A R K, GhavamiNejad A, Unnithan A R, Thomas R G, Moon M, Jeong Y Y, Park C H, Kim C S. Nanoscale, 2015, 7(43):18119.
[83] Chaturvedi K, Ganguly K, Nadagouda M N, Aminabhavi T M. J. Control. Release, 2013, 165(2):129.
[84] Wang D D, Wu H H, Zhou J J, Xu P P, Wang C L, Shi R H, Wang H B, Wang H, Guo Z, Chen Q W. Adv. Sci., 2018, 5:1800287.
[85] Ding W, Chechetka S A, Masuda M, Shimizu T, Aoyagi M, Minamikawa H, Miyako E. Chem. Eur J., 2016, 22(13):4345.
[86] Yu J, Lin Y H, Yang L, Huang C C, Chen L, Wang W C, Chen G W, Yan J, Sawettanun S, Lin C H. Adv. Healthcare Mater., 2017, 6(2):1600804.
[87] Zheng R, Wang S, Tian Y, Jiang X G, Fu D L, Shen S, Yang W L. ACS Appl. Mater. Interfaces, 2015, 7(29):15876.
[88] Ding Y, Su S, Zhang R, Shao L, Zhang Y, Wang B, Li Y, Chen L, Yu Q, Wu Y, Nie G. Biomaterials, 2017, 113:243.
[89] Zhang R R, Su S S, Hu K L, Shao L H, Deng X W, Sheng W, Wu Y. Nanoscale, 2015, 7(46):19722.
[90] Wu X J, Zhou L Z, Su Y, Dong C M. Polym. Chem., 2016, 7(35):5552.
[91] GhavamiNejad A, SamariKhalaj M, Aguilar L E, Park C H, Kim C S. Sci. Rep., 2016, 6:33594.
[92] Kim S H, Sharker S M, Lee H, In I, Lee K D, Park S Y. RSC Adv., 2016, 6(66):61482.
[93] Li Y, Zhang X Y, Zheng M, Liu S, Xie Z G. RSC Adv., 2016, 6(59):54087.
[94] Li D, Zhang Y X, Wen S H, Song Y, Tang Y Q, Zhu X Y, Shen M W, Mignani S, Majoral J, Zhao Q H, Shi X Y. J. Mater. Chem. B, 2016, 4(23):4216.
[95] Liu B, Li C X, Xing B G, Yang P P, Lin J. J. Mater. Chem. B, 2016, 4(28):4884.
[96] Zhao H, Chao Y, Liu J J, Huang J, Pan J, Guo W L, Wu J Z, Sheng M, Yang K, Wang J, Liu Z. Theranostics, 2016, 6(11):1833.
[97] Cho S, Park W, Kim D H. ACS Appl. Mater. Interfaces, 2017, 9(1):101.
[98] Chen Y, Ai K L, Liu J H, Ren X Y, Jiang C H, Lu L H. Biomaterials, 2016, 77:198.
[99] Dong Z L, Gong H, Gao M, Zhu W W, Sun X Q, Feng L Z, Fu T T, Li Y G, Liu Z. Theranostics, 2016, 6(7):1031.
[100] Lin L S, Cong Z X, Cao J B, Ke K M, Peng Q L, Gao J, Yang H H, Liu G, Chen X. ACS Nano, 2014, 8(4):3876.
[101] Li Y Y, Jiang C H, Zhang D W, Wang Y, Ren X Y, Ai K L, Chen X S, Lu L H. Acta Biomater., 2017, 47:124.
[102] Zhang M, Peltier R, Zhang M M, Lu H J, Bian H D, Li Y Y, Xu Z T, Shen Y J, Sun H Y, Wang Z K. J. Mater. Chem. B, 2017, 5(27):5311.
[103] Li H, Yan Y L, Gu X F, Jiao L, Peng H N, Cui W. Colloids Surf. A, 2018, 538:513.
[104] Jiang J H, Zhu L P, Zhu L J, Zhang H T, Zhu B K, Xu Y Y. ACS Appl. Mater. Interfaces, 2013, 5(24):12895.
[105] Su L, Yu Y, Zhao Y S, Liang F, Zhang X J. Sci. Rep., 2016, 6:24420.
[106] Iqbal Z, Lai E P C, Avis T J. J. Mater. Chem., 2012, 22(40):21608.
[107] Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Biomaterials, 2012, 33(29):6952.
[108] Lee S J, Lee D, Yoon T R, Kim H K, Jo H H, Park J S, Lee J H, Kim W D, Kwon I K, Park S A. Acta Biomater., 2016, 40:182.
[1] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[2] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[3] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[4] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[7] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[8] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[9] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[10] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
[11] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[12] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[13] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[14] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[15] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.