中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 767-778 DOI: 10.7536/PC200616 Previous Articles   Next Articles

• Original article •

Flexible Pressure/Strain Sensors Based on 3D Conductive Materials

Lujie Fan1, Li Chen1(), Yin He1, Hao Liu1,2,*   

  1. 1 School of Textile Science and Engineering, TianGong University, Tianjin 300387, China
    2 Intelligent Wearable Electronic Textile Research Institute, TianGong University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Contact: Hao Liu
  • Supported by:
    National Natural Science Foundation of China(51473122); Postdoctoral Science Foundation of China(2016M591390); Natural Science Foundation of Tianjin(18JCYBJC18500)
Richhtml ( 64 ) PDF ( 1283 ) Cited
Export

EndNote

Ris

BibTeX

As an important part of intelligent wearable device, flexible pressure/strain sensors are widely used in human motion detection, health monitoring, robot and electronic skin. Among them, 3D conductive materials(such as aerogels, sponges and foams) have 3D interconnection microstructures and have excellent compressibility and conductivity, which bring a breakthrough that enables sensors to have high sensitivity and wide range. According to the raw materials for the preparation of 3D conductive materials, this article divides them into five types: biomass materials, carbon materials, polymer materials, metal nanomaterials, and MXene materials. Then, the preparation methods of 3D conductive materials and their innovation and development in the field of sensor applications are summarized. Finally, the prospect of flexible strain/pressure sensors based on 3D materials is discussed.

Contents

1 Introduction

2 Basic characteristics of flexible strain/pressure sensors

3 Preparation of 3D material and its application in flexible strain/pressure sensors

3.1 3D biomass materials

3.2 3D carbon materials

3.3 3D polymer materials

3.4 3D metal nanomaterials

3.5 3D Mexene materials

4 Application

5 Conclusion and prospect

Fig. 1 Schematic diagram of flexible pressure/strain sensor sensing based on three-dimensional material(a) resistive(b) capacitive
Table 1 Summary of flexible pressure/strain sensors based on 3D biomass materials
Fig. 2 (a) Preparation of PEDOT: PSS/CNF aerogel[50]. Copyright 2018, American Chemical Society(b) An optical photograph and SEM images of KGM/SiO2 composite aerogel[52]. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 2 Summary of flexible pressure/strain sensors based on 3D carbon materials
Fig. 3 (a) Process of preparing CNC/GO-X aerogel by directional freezing method[58]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(b) Preparation of carbon aerogel by 3D printing [61].Copyright 2018, Spring Nature
Table 3 Summary of flexible pressure/strain sensors based on 3D polymer materials
Fig. 4 SEM images of PDMS sponge prepared with different templates:(a) Sugar cube[71]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(b) PS bead [72]. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(c) 3D printing [73] Copyright 2016, American Chemical Society
Fig. 5 Process of preparing TPU/CNS sponge[68]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 4 Summary of flexible pressure/strain sensors based on 3D metal nanomaterials
Table 5 Summary of flexible pressure/strain sensor based on 3D Mxene material
Fig. 6 (a,b) Sensor for detecting pulse and breathing[45]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;(c~f) Sensors for detecting expressions, joint movement, and vocalization [93]. Copyright 2018, American Chemical Society
Fig. 7 (a)Application of sensors in the direction of electronic skin[63]. Copyright 2019, American Chemical Society.(b) Application of sensors in the direction of robot[95]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Chen J, Zheng J H, Gao Q W, Zhang J J, Zhang J Y, Omisore O, Wang L, Li H. Appl. Sci., 2018, 8(3):345.

doi: 10.3390/app8030345
[2]
Wang J, Lou Y Y, Wang B, Sun Q, Zhou M W, Li X Y. Sensors, 2020, 20(9):2459.

doi: 10.3390/s20092459
[3]
Xiong Y X, Shen Y K, Tian L, Hu Y G, Zhu P L, Sun R, Wong C P. Nano Energy, 2020, 70:104436.

doi: 10.1016/j.nanoen.2019.104436
[4]
Li P, Zhao L B, Jiang Z D, Yu M Z, Li Z, Zhou X Y, Zhao Y L. Sci. Rep., 2019, 9:14457.

doi: 10.1038/s41598-019-50997-1
[5]
Chen C, Wang Z Y, Li W, Chen H Y, Mei Z N, Yuan W, Tao L K, Zhao Y T, Huang G S, Mei Y F, Cao Z R, Wang R R, Chen W. IEEE Sensor J., 2019, 19(19):8502.

doi: 10.1109/JSEN.7361
[6]
Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. Adv. Mater., 2014, 26(9):1336.

doi: 10.1002/adma.201304248
[7]
Han S J, Liu C R, Huang Z B, Zheng J W, Xu H H, Chu S, Wu J, Liu C. Adv. Mater. Technol., 2019, 4(5):1800640.

doi: 10.1002/admt.v4.5
[8]
Chang S N, Li J, He Y, Liu H, Cheng B W. Sensor Actuat. A: Phys., 2019, 294:45.

doi: 10.1016/j.sna.2019.05.011
[9]
Xiao Z J, Zhou W Y, Zhang N, Zhang Q, Xia X G, Gu X G, Wang Y C, Xie S S. Small, 2019, 15(13):1804779.

doi: 10.1002/smll.v15.13
[10]
Lu W D, Yu P, Jian M Q, Wang H M, Wang H M, Liang X P, Zhang Y Y. ACS Appl. Mater. Interfaces, 2020, 12(10):11825.

doi: 10.1021/acsami.9b21068
[11]
Montazerian H, Rashidi A, Dalili A, Najjaran H, Milani A S, Hoorfar M. Small, 2019, 15(17):1804991.

doi: 10.1002/smll.201804991 pmid: 30919566
[12]
He X W, Liu Q Z, Zhong W B, Chen J H, Sun D M, Jiang H Q, Liu K, Wang W W, Wang Y D, Lu Z T, Li M F, Liu X, Wang X J, Sun G, Wang D. ACS Appl. Mater. Interfaces, 2019, 11(21):19350.

doi: 10.1021/acsami.9b02591
[13]
He Y, Zhao L D, Wang X J, Liu L Y, Liu H. Nanotechnology, 2020, 31(18):185502.

doi: 10.1088/1361-6528/ab6cd8
[14]
Kou H R, Zhang L, Tan Q L, Liu G Y, Dong H L, Zhang W D, Xiong J J. Sci. Rep., 2019, 9:3916.

doi: 10.1038/s41598-019-40828-8
[15]
Qiu J, Guo X H, Chu R, Wang S L, Zeng W, Qu L, Zhao Y N, Yan F, Xing G Z. ACS Appl. Mater. Interfaces, 2019, 11(43):40716.

doi: 10.1021/acsami.9b16511
[16]
Shi K M, Huang X Y, Sun B, Wu Z Y, He J L, Jiang P K. Nano Energy, 2019, 57:450.

doi: 10.1016/j.nanoen.2018.12.076
[17]
Beyranvand M, Gholizadeh A. Curr. Appl. Phys., 2020, 20(1):226.

doi: 10.1016/j.cap.2019.11.009
[18]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv. Mater., 2014, 26(21):3451.

doi: 10.1002/adma.v26.21
[19]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y. Nat. Mater., 2012, 11(9):795.

doi: 10.1038/nmat3380
[20]
dos Santos A, Pinela N, Alves P, Santos R, Farinha R, Fortunato E, Martins R, Águas H, Igreja R. Sensors, 2019, 19(4):899.

doi: 10.3390/s19040899
[21]
Zou Q, Zheng J, Su Q, Wang W L, Gao W, Ma Z M. Sensor Actuat. A: Phys., 2019, 300:111658.

doi: 10.1016/j.sna.2019.111658
[22]
Yang C F, Li L L, Zhao J X, Wang J J, Xie J X, Cao Y P, Xue M Q, Lu C H. ACS Appl. Mater. Interfaces, 2018, 10(30):25811.

doi: 10.1021/acsami.8b08666
[23]
Jia W D, Zhang Q, Cheng Y Q, Zhao D, Liu Y, Zhang W D, Sang S B. Nano, 2019, 14(7):1950081.

doi: 10.1142/S1793292019500814
[24]
Sun X G, Sun J H, Zheng S K, Wang C K, Tan W S, Zhang J G, Liu C X, Liu C, Li T, Qi Z M, Xue N. Nanomaterials, 2019, 9(5):779.

doi: 10.3390/nano9050779
[25]
Ding Y C, Xu T, Onyilagha O, Fong H, Zhu Z T. ACS Appl. Mater. Interfaces, 2019, 11(7):6685.

doi: 10.1021/acsami.8b20929
[26]
Hu Y J, Chen Z H, Zhuo H, Zhong L X, Peng X W, Sun R C. Adv. Funct. Mater., 2019, 29(44):1904472.

doi: 10.1002/adfm.v29.44
[27]
Yang J, Li Y, Zheng Y Y, Xu Y M, Zheng Z K, Chen X D, Liu W. Small, 2019, 15(41):1902826.

doi: 10.1002/smll.v15.41
[28]
Dai L, Wang Y, Zou X J, Chen Z R, Liu H, Ni Y H. Small, 2020, 16(13):1906567.

doi: 10.1002/smll.v16.13
[29]
Chen S, Song Y J, Xu F. ACS Appl. Mater. Interfaces, 2018, 10(40):34646.

doi: 10.1021/acsami.8b13535
[30]
Wang C Y, Xia K L, Jian M Q, Wang H M, Zhang M C, Zhang Y Y. J. Mater. Chem. C, 2017, 5(30):7604.

doi: 10.1039/C7TC01962A
[31]
Zhang L, Li H Q, Lai X J, Gao T Y, Liao X F, Chen W J, Zeng X R. Cellulose, 2019, 26(8):5001.

doi: 10.1007/s10570-019-02432-x
[32]
Gao L B, Fan R, Zhou W Z, Hu X K, Cao K, Wang W D, Lu Y. Adv. Electron. Mater., 2019, 5(12):1900353.

doi: 10.1002/aelm.v5.12
[33]
Sengupta D, Pei Y T, Kottapalli A G P. ACS Appl. Mater. Interfaces, 2019, 11(38):35201.

doi: 10.1021/acsami.9b11776
[34]
Zhong W B, Jiang H Q, Yang L Y, Yadav A, Ding X C, Chen Y L, Li M F, Sun G, Wang D. Polymers, 2019, 11(11):1883.

doi: 10.3390/polym11111883
[35]
Pan J J, Yang M Y, Luo L, Xu A C, Tang B, Cheng D S, Cai G M, Wang X. ACS Appl. Mater. Interfaces, 2019, 11(7):7338.

doi: 10.1021/acsami.8b18823
[36]
Huang J Y, Li D W, Zhao M, Ke H Z, Mensah A, Lv P, Tian X J, Wei Q F. Chem. Eng. J., 2019, 373:1357.

doi: 10.1016/j.cej.2019.05.136
[37]
Luo W Y, Charara M, Saha M C, Liu Y T. Appl. Nanosci., 2019, 9(6):1309.

doi: 10.1007/s13204-019-00958-x
[38]
Sun Y, Du Z Q. Nanomaterials, 2019, 9(7):945.

doi: 10.3390/nano9070945
[39]
Jeong H, Noh Y, Ko S H, Lee D. Compos. Sci. Technol., 2019, 174:50.

doi: 10.1016/j.compscitech.2019.01.028
[40]
Zhu G J, Ren P G, Guo H, Jin Y L, Yan D X, Li Z M. ACS Appl. Mater. Interfaces, 2019, 11(26):23649.

doi: 10.1021/acsami.9b08611
[41]
Song D K, Li X F, Li X P, Jia X Q, Min P, Yu Z Z. J. Colloid Interface Sci., 2019, 555:751.

doi: 10.1016/j.jcis.2019.08.020
[42]
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2020, 12(19):22212.

doi: 10.1021/acsami.0c05819
[43]
Tan H, Tao Q, Pande I, Majumdar S, Liu F, Zhou Y, Persson P O A, Rosen J, van Dijken S. Nat. Commun, 2020, 11(1):1369.

doi: 10.1038/s41467-020-15105-2
[44]
Xu S M, Li X Y, Sui G P, Du R N, Zhang Q, Fu Q. Chem. Eng. J., 2020, 381:122666.

doi: 10.1016/j.cej.2019.122666
[45]
Huang Y, Chen Y, Fan X Y, Luo N Q, Zhou S, Chen S C, Zhao N, Wong C P. Small, 2018, 14(31):1801520.

doi: 10.1002/smll.v14.31
[46]
Wang K L, Liu X R, Tan Y, Zhang W, Zhang S F, Li J Z. Chem. Eng. J., 2019, 371:769.

doi: 10.1016/j.cej.2019.04.108
[47]
Zhang Q, Chen C J, Chen W S, Pastel G, Guo X Y, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P, Hu L B. ACS Appl. Mater. Interfaces, 2019, 11(6):5919.

doi: 10.1021/acsami.8b17414
[48]
Song H Y, Xu S M, Li Y J, Dai J Q, Gong A, Zhu M W, Zhu C L, Chen C J, Chen Y N, Yao Y G, Liu B Y, Song J W, Pastel G, Hu L B. Adv. Energy Mater., 2018, 8(4):1701203.

doi: 10.1002/aenm.v8.4
[49]
Hondo H, Saito T, Isogai A. Cellulose, 2019, 26(5):3021.

doi: 10.1007/s10570-019-02311-5
[50]
Zhou J, Hsieh Y L. ACS Appl. Mater. Interfaces, 2018, 10(33):27902.

doi: 10.1021/acsami.8b10239
[51]
Luo M Y, Li M F, Li Y Q, Chang K Q, Liu K, Liu Q Z, Wang Y D, Lu Z T, Liu X, Wang D. Compos. Commun., 2017, 6:68.

doi: 10.1016/j.coco.2017.10.001
[52]
Si Y, Wang X Q, Yan C C, Yang L, Yu J Y, Ding B. Adv. Mater., 2016, 28(43):9512.

doi: 10.1002/adma.201603143
[53]
Chen C J, Song J W, Zhu S Z, Li Y J, Kuang Y D, Wan J Y, Kirsch D, Xu L S, Wang Y B, Gao T T, Wang Y L, Huang H, Gan W T, Gong A, Li T, Xie J, Hu L B. Chem, 2018, 4(3):544.

doi: 10.1016/j.chempr.2017.12.028
[54]
Hosseini H, Kokabi M, Mousavi S M. Carbohydr. Polym., 2018, 201:228.

doi: S0144-8617(18)30952-4 pmid: 30241815
[55]
Liu Y W, Zheng H J, Liu M X. Mater. Des., 2018, 141:276.

doi: 10.1016/j.matdes.2017.12.046
[56]
Li Y L. Science, 2004, 304(5668):276.

doi: 10.1126/science.1094982
[57]
Huang Z M, Liu X Y, Wu W G, Li Y Q, Wang H. J. Mater. Sci., 2017, 52(20):12540.

doi: 10.1007/s10853-017-1374-1
[58]
Zhuo H, Hu Y J, Tong X, Chen Z H, Zhong L X, Lai H H, Liu L X, Jing S S, Liu Q Z, Liu C F, Peng X W, Sun R C. Adv. Mater., 2018, 30(18):1706705.

doi: 10.1002/adma.201706705
[59]
Peng X W, Wu K Z, Hu Y J, Zhuo H, Chen Z H, Jing S S, Liu Q Z, Liu C F, Zhong L X. J. Mater. Chem. A, 2018, 6(46):23550.

doi: 10.1039/C8TA09322A
[60]
Zhang W Q, Yin B, Wang J, Mohamed A, Jia H B. J. Alloy. Compd., 2019, 785:1001.

doi: 10.1016/j.jallcom.2019.01.294
[61]
Guo F, Jiang Y Q, Xu Z, Xiao Y H, Fang B, Liu Y J, Gao W W, Zhao P, Wang H T, Gao C. Nat. Commun., 2018, 9:881.

doi: 10.1038/s41467-018-03268-y pmid: 29491395
[62]
Chen X Y, Liu H, Zheng Y J, Zhai Y, Liu X H, Liu C T, Mi L W, Guo Z H, Shen C Y. ACS Appl. Mater. Interfaces, 2019, 11(45):42594.

doi: 10.1021/acsami.9b14688
[63]
Zu G Q, Kanamori K, Nakanishi K, Huang J. Chem. Mater., 2019, 31(16):6276.

doi: 10.1021/acs.chemmater.9b02437
[64]
van Aken K L, Pérez C R, Oh Y, Beidaghi M, Joo Jeong Y, Islam M F, Gogotsi Y. Nano Energy, 2015, 15:662.

doi: 10.1016/j.nanoen.2015.05.028
[65]
Kim Y, Jang S, Oh J H. Microelectron. Eng., 2019, 215:111002.

doi: 10.1016/j.mee.2019.111002
[66]
Zhang S D, Liu H, Yang S Y, Shi X Z, Zhang D B, Shan C X, Mi L W, Liu C T, Shen C Y, Guo Z H. ACS Appl. Mater. Interfaces, 2019, 11(11):10922.

doi: 10.1021/acsami.9b00900
[67]
Wu Y H, Liu H Z, Chen S, Dong X C, Wang P P, Liu S Q, Lin Y, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2017, 9(23):20098.

doi: 10.1021/acsami.7b04605
[68]
Sang Z, Ke K, Manas-Zloczower I. Small, 2019, 15(45):1903487.

doi: 10.1002/smll.v15.45
[69]
Huang J, Wang H, Liang B, Etim U J, Liu Y, Li Y, Yan Z. Chem. Eng. J, 2019, 364:28.

doi: 10.1016/j.cej.2019.01.071
[70]
Liu W J, Liu N S, Yue Y, Rao J Y, Luo C, Zhang H, Yang C X, Su J, Liu Z T, Gao Y H. J. Mater. Chem. C, 2018, 6(6):1451.

doi: 10.1039/C7TC05228F
[71]
Charara M, Luo W Y, Saha M C, Liu Y T. Adv. Eng. Mater., 2019, 21(5):1801068.

doi: 10.1002/adem.v21.5
[72]
Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Kim D, Lee T. Adv. Electron. Mater., 2016, 2(12):1600356.

doi: 10.1002/aelm.v2.12
[73]
Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C. ACS Appl. Mater. Interfaces, 2016, 8(3):2187.

doi: 10.1021/acsami.5b10791
[74]
Ding Y C, Yang J, Tolle C R, Zhu Z T. ACS Appl. Mater. Interfaces, 2018, 10(18):16077.

doi: 10.1021/acsami.8b00457
[75]
Zhao S F, Han F, Li J H, Meng X Y, Huang W P, Cao D X, Zhang G P, Sun R, Wong C P. Small, 2018, 14(26):1800047.

doi: 10.1002/smll.v14.26
[76]
Weng C X, Dai Z H, Wang G R, Liu L Q, Zhang Z. ACS Appl. Mater. Interfaces, 2019, 11(6):6541.

doi: 10.1021/acsami.8b19890
[77]
Zhao S, Zhu R. Adv. Mater. Technol., 2019, 4(9):1900414.

doi: 10.1002/admt.v4.9
[78]
Xu X J, Wang R R, Nie P, Cheng Y, Lu X Y, Shi L J, Sun J. ACS Appl. Mater. Interfaces, 2017, 9(16):14273.

doi: 10.1021/acsami.7b02087
[79]
Wu S T, Zou M C, Shi X W, Yuan Y J, Bai W F, Ding M Y, Cao A Y. Adv. Mater. Technol., 2019, 4(10):1900470.

doi: 10.1002/admt.v4.10
[80]
Meng X Y, Zhao S F, Zhang Z, Zhang R L, Li J H, Leng J F, Cao D X, Zhang G P, Sun R. J. Mater. Chem. C, 2019, 7(23):7061.

doi: 10.1039/C9TC00943D
[81]
Nguyen V T, Min B K, Yi Y, Kim S J, Choi C G. Chem. Eng. J., 2020, 393:124608.

doi: 10.1016/j.cej.2020.124608
[82]
Meng J N, Zhang F F, Zhang L, Liu L Y, Chen J T, Yang B J, Yan X B. J. Energy Chem., 2020, 46:256.

doi: 10.1016/j.jechem.2019.10.008
[83]
Li J M, Zhao L, Wang S M, Li J, Wang G H, Wang J. Appl. Surf. Sci., 2020, 515:145922.

doi: 10.1016/j.apsusc.2020.145922
[84]
Wang W D, Jiang D M, Chen X, Xie K, Jiang Y H, Wang Y Q. Appl. Surf. Sci., 2020, 515:145982.

doi: 10.1016/j.apsusc.2020.145982
[85]
Zhang A T, Liu R, Tian J M, Huang W G, Liu J Q. Chem. Eur. J., 2020, 26(29):6342.

doi: 10.1002/chem.v26.29
[86]
Ma Y N, Liu N S, Li L Y, Hu X K, Zou Z G, Wang J B, Luo S J, Gao Y H. Nat. Commun., 2017, 8:1207.

doi: 10.1038/s41467-017-01136-9
[87]
Zhuo H, Hu Y J, Chen Z H, Peng X W, Liu L X, Luo Q S, Yi J W, Liu C F, Zhong L X. J. Mater. Chem. A, 2019, 7(14):8092.

doi: 10.1039/c9ta00596j
[88]
Chen Z H, Hu Y J, Zhuo H, Liu L X, Jing S S, Zhong L X, Peng X W, Sun R C. Chem. Mater., 2019, 31(9):3301.

doi: 10.1021/acs.chemmater.9b00259
[89]
Yue Y, Liu N S, Liu W J, Li M, Ma Y N, Luo C, Wang S L, Rao J Y, Hu X K, Su J, Zhang Z, Huang Q, Gao Y H. Nano Energy, 2018, 50:79.

doi: 10.1016/j.nanoen.2018.05.020
[90]
Li X P, Li Y, Li X F, Song D K, Min P, Hu C, Zhang H B, Koratkar N, Yu Z Z. J. Colloid Interface Sci., 2019, 542:54.

doi: 10.1016/j.jcis.2019.01.123
[91]
Zhu M, Yue Y, Cheng Y F, Zhang Y N, Su J, Long F, Jiang X L, Ma Y N, Gao Y H. Adv. Electron. Mater., 2020, 6(2):1901064.

doi: 10.1002/aelm.v6.2
[92]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016, 26(11):1678.

doi: 10.1002/adfm.v26.11
[93]
Hu Y J, Zhuo H, Chen Z H, Wu K Z, Luo Q S, Liu Q Z, Jing S S, Liu C F, Zhong L X, Sun R C, Peng X W. ACS Appl. Mater. Interfaces, 2018, 10(47):40641.

doi: 10.1021/acsami.8b15439
[94]
Miao P, Wang J, Zhang C C, Sun M Y, Cheng S S, Liu H. Nano-Micro Lett., 2019, 11:71.
[95]
Sencadas V, Tawk C, Alici G. Adv. Mater. Technol., 2019, 4(10):1900423.

doi: 10.1002/admt.v4.10
[96]
Zhang Y Z, Lin Z K, Huang X P, You X J, Ye J H, Wu H B. Smart Mater. Struct., 2019, 28(10):105023.

doi: 10.1088/1361-665X/ab3a0c
No related articles found!