中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 628-638 DOI: 10.7536/PC170909 Previous Articles   Next Articles

• Review •

Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments

Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*   

  1. College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21625202).
PDF ( 1014 ) Cited
Export

EndNote

Ris

BibTeX

Design and synthesis of conjugated aromatic macrocyclic rings that are directly linked by C—C bonds has been currently attracting wide interests because these aromatic macrocyclic rings can be used for synthesis of single-walled carbon nanotubes through the "bottom-up" stratety. Conventional methods of preparing carbon nanotubes, such as arc method, chemical vapor deposition method and so on, are difficult to form the uniform single-walled carbon nanotubes. This "bottom-up" synthetic strategy provides a feasible method for the highly efficient synthesis of highly homogeneous single-walled carbon nanotubes. For this reason, the "bottom-up" synthetic strategy has become an on-going hot spot for the synthesis of single-walled carbon nanotubes, although it is still a big challenge. This article summarizes new progress in the design and synthesis of two-dimensional (2D) carbon nanorings, 2D carbon nanobelts and three-dimensional (3D) carbon nanocages. In particular, this article focuses on the design principle and synthesis methods of 2D carbon nanorings and highlights the polycyclic aromatic hydrocarbon (PAHs) carbon nanorings. Polycyclic aromatic hydrocarbons usually have excellent photoelectric properties. Thus, the conjugated carbon nanohoops constructed by these PAHs moieties may exhibit new photoelectric properties.
Contents
1 Introduction
2 2D conjugated carbon nanoring
2.1 Cycloparaphenylenes
2.2 Carbon nanoring of polycyclic aromatic hydrocarbons
3 2D conjugated carbon nanobelts
4 3D conjugated carbon nanocages
5 Properties and applications
6 Conclusion

CLC Number: 

[1] Iijima S. Nature, 1991, 354:56.
[2] Baughman R H, Zakhidov A A, Heer W A. Science, 2002,297:787.
[3] Wang W, Wang Y X, Yang H B. Org. Chem. Front., 2014, 1:1005.
[4] Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed., 2016, 55:5136.
[5] Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130:17646.
[6] Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K.Angew. Chem. Int. Ed., 2009, 48:6112.
[7] Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed., 2010, 49:757.
[8] (a) Omachi H, Segawa Y, Itami K. Acc. Chem. Res., 2012, 45:1378.;
(b) Sisto T J, Jasti R. Synlett., 2012, 23:483.;
(c) Yamago S, Kayahara E, Iwamoto T. Chem. Rec., 2014, 14:84.;
(d) Lewis S E. Chem. Soc. Rev., 2015, 44:2221v;
(e) Darzi E R, Jasti R. Chem. Soc. Rev., 2015, 44:6401.;
(f) Evans P, Jasti R. PolyarenesI, Berlin, Heidelberg,:Springer, 2014. 249.
[9] (a) Batson J M, Swager T M. Synlett., 2013, 24:2545.;
(b) Huang C F, Huang Y W, Akhmedov N G, Popp B V, Peterson J L, Wang K K. Org. Lett., 2014, 16:2672.;
(c) Omachi H, Segawa Y, Itami K. Org. Lett., 2011, 13:2480.
[10] (a) Sisto T J, Tian X, Jasti R. J. Org. Chem., 2012, 77:5857.;
(b) Golling F E, Quernheim M, Wagner M, Nishiuchi T, Mîllen K. Angew. Chem. Int. Ed., 2014, 53:1525.
[11] (a) Lu D P, Wu H T, Dai Y F, Shi H, Shao X, Yang S F, Yang J L, Du P W. Chem. Commun., 2016, 52:7164.;
(b) Lu D P, Cui S S, Du P W. Synlett, 2017, 50:8342.
[12] Yagi A, Venkataramana G, Segawa Y, Itami K. Chem. Commun., 2014, 50:957.
[13] Tran-Van A F, Huxol E, Basler J M, Neuburger M, Adjizian J J, Ewels C P, Wegner H A. Org. Lett., 2014, 16:1594.
[14] Xia J L, Golder M R, Foster M E, Wong B M, Jasti R. J. Am. Chem. Soc., 2012, 134:19709.
[15] Ishii Y, Matsuura S, Segawa Y, Itami K. Org. Lett., 2014, 16:2174.
[16] Hitosugi S, Nakanish W, Yamasaki T, Isobe H. Nat. Commun., 2011, 2:492.
[17] Hitosugi S, Yamasaki T, Isobe H. J. Am. Chem. Soc., 2012, 134:12442.
[18] Matsuno T, Kamata S, Hitosugi S, Isobe H. Chem. Sci., 2013, 4:3179.
[19] Sun Z, Sarkar P, Suenaga T, Sato S, Isobe H. Angew. Chem. Int. Ed., 2015, 54:12800.
[20] Nakanishi W, Yoshioka T, Taka H, Xue J Y, Kita H, Isobe H. Angew. Chem. Int. Ed., 2011, 50:5323.
[21] Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc., 2012, 134:2962.
[22] Sun Z, Suenaga T, Sarkar P, Sato S, Kotani M, Isobe H. Proc. Natl. Acad. Sci., 2016, 113:8109.
[23] Sarkar P, Sun Z, Tokuhira T, Kotani M, Sato S, Isobe H. ACS Cent. Sci., 2016, 2:740.
[24] Hitosugi S, Sato S, Matsuno T, Koretsune T, Arita R, Isobe H. Angew. Chem. Int. Ed., 2017, 56:9106.
[25] Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56:158.
[26] Nishiuchi T, Feng X L, Enkelmann V, Wagner M, Müllen K. Chem. Eur. J., 2012, 18:16621.
[27] Iwamoto T, Kayahara E, Yasuda N, Suzuki T, Yamago S. Angew. Chem. Int. Ed., 2014, 53:6430.
[28] Kayahara E, Qu R, Kojima M, Iwamoto T, Suzuki T, Yamago S. Chem. Eur. J., 2015, 21:18939.
[29] Heilbronner E. Helv. Chim. Acta, 1954, 37:921.
[30] Kohnke F H, Slawin A M Z, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1987, 26:892.
[31] Standera M, Schlüter A D. Fragments of Fullerenes and Carbon Nanotubes. 2012. 343.
[32] Cory R M, McPhail C L, Dikmans A J, Vittal J J. Tetrahedron Lett., 1996, 37:1983.
[33] Matsui K, Fushimi M, Segawa Y, Itami K. Org. Lett., 2016, 18:5352.
[34] Vögtle F, Schroder A, Karbach D. Angew. Chem. Int. Ed., 1991, 30:575.
[35] Kammermeier S, Jones P G, Herges R. Angew. Chem. Int. Ed., 1996, 35:2669.
[36] Iyoda M, Kuwatani Y, Nishinaga T, Takase M, Nishiuchi T. Fragments of Fullerenes and Carbon Nanotubes. 2012. 311.
[37] Merner B L, Dawe L N, Bodwell G J. Angew. Chem. Int. Ed., 2009, 48:5487.
[38] Scott L T. Angew. Chem. Int. Ed., 2003, 42:4133.
[39] Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356:172.
[40] Mastalerz M. Angew. Chem. Int. Ed., 2010, 49:5042.
[41] Hof F, Craig S L, Nuckolls C, Rebek J J. Angew. Chem. Int. Ed., 2002, 41:1488.
[42] Mal P, Breiner B, Rissanen K, Nitschke J R. Science, 2009, 324:1697.
[43] Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc., 2014, 136:16452.
[44] Yoshizawa M, Klosterman J K, Fujita M. Angew. Chem. Int. Ed., 2009, 48:3418.
[45] Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N,Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4:2694.
[46] Ozaki N, Sakamoto H, Nishihara T, Fujimori T, Hijikata Y, Kimura R, Irle S, Itami K. Angew. Chem. Int. Ed., 2017, 56:11196.
[47] Kubota N, Segawa Y, Itami K. J. Am. Chem. Soc., 2015, 137:1356.
[48] Sisto T J, Golder M R, Hirst E S, Jasti R. J. Am. Chem. Soc., 2011, 133:15800.
[49] Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc., 2011, 133:8354.
[50] Matsuno T, Kamata S, Sato S, Yokoyama A, Sarkar P, Isobe H. Angew. Chem. Int. Ed., 2017, 56:15020.
[1] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[2] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[3] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[4] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[5] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[6] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.
[7] Dandan Shi, Xisha Zhang, Deqing Zhang. Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials [J]. Progress in Chemistry, 2018, 30(5): 658-672.
[8] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[9] Yijun Lin, Yunlong Zhu, Guichao Kuang, Guipeng Yu*, Riguang Jin. Application of Porous Organic Polymers in the Radioactive Iodine Adsorption [J]. Progress in Chemistry, 2017, 29(7): 766-775.
[10] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[11] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[12] Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi. Enzyme Immobilized on Carbon Nanotubes [J]. Progress in Chemistry, 2015, 27(9): 1251-1259.
[13] Shu Xin, Li Zhaoxiang, Xia Jiangbin. Synthetic Methods for Poly(thiophene)s [J]. Progress in Chemistry, 2015, 27(4): 385-394.
[14] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[15] Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*. The Application of DNA Biosensor Based on Conjugated Polymers [J]. Progress in Chemistry, 2015, 27(12): 1799-1807.