中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 658-672 DOI: 10.7536/PC171220 Previous Articles   Next Articles

• Review •

Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials

Dandan Shi1,2, Xisha Zhang1, Deqing Zhang1,2*   

  1. 1. Beijing National Laboratory for Molecular Sciences, Organic Solids Key Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Strategic Priority Research Program of the CAS (No.XDB12010300) and the National Natural Science Foundation of China (No. 21602225, 21661132006).
PDF ( 612 ) Cited
Export

EndNote

Ris

BibTeX

Benzene is one of the most widely used units in organic opto-electronic materials. Different from six-membered benzene, seven-membered carbon conjugated system has seen much less applications in opto-electronic materials. Until recently, some attention has been paid to this field. Because of its different molecular orbital characteristic from benzene and easiness to be oxidized, seven-membered carbon ring conjugated system may introduce special and interesting properties to organic opto-electronic materials. In this paper, the conjugated seven-membered carbon rings are reviewed from the point of discovery, synthesis and structural investigation. Then, the skeleton types containing seven-membered carbon rings are analyzed and the synthetic methods for these skeleton types are demonstrated. The applications of conjugated molecules containing seven-membered carbon rings in near infrared absorptive materials, organic field effect transistors, organic solar cells and stimuli-responsive systems are introduced. In the end, the future developments of this field are discussed.
Contents
1 Introduction
2 Conjugated frameworks containing 7-membered carbon ring
3 Representative synthetic methods for conjugated molecules containing 7-membered carbon ring
3.1 Cyclo-addition and electro-cyclization reactions
3.2 Friedel-Crafts reaction
3.3 Condensation reaction
3.4 Scholl-type oxidative coupling reaction
3.5 Metal mediated alkene or alkyne cyclization
3.6 Functionalization of 7-membered ring
4 Application of conjugated molecules containing 7-membered carbon ring in near infrared absorption systems
5 Application of conjugated molecules containing 7-membered carbon ring in organic field effect transistors
5.1 Azulene based systems
5.2 Non-azulene based systems
6 Application of conjugated molecules containing 7-membered carbon ring in organic solar cells
7 Application of conjugated molecules containing 7-membered carbon ring in stimuli-responsive systems
7.1 Azulene based systems
7.2 Non-azulene based systems
8 Conclusion and outlook

CLC Number: 

[1] Tovar J D. Chem. Rec., 2014, 14:214.
[2] Tobe Y. Chem. Rec., 2015, 15:86.
[3] Nozoe T. Bull. Chem. Soc. Jpn., 1936, 11:295.
[4] Nozoe T. Yakugaku (Science of Drugs), 1949, 3:174.
[5] Nozoe T, Seto S, Kitahara Y, Kunori M, Nakayama Y. Proc. Jpn. Acad., 1950, 26:38.
[6] Asao T, ItÔ S, Murata I. Eur. J. Org. Chem., 2004, 2004:899.
[7] Miao Q. Chem. Rec., 2015, 15:1156.
[8] Sherndal A E. J. Am. Chem. Soc., 1915, 37:167.
[9] Plattner P A, Alexander S P. Helv. Chim. Acta., 1937, 20:224.
[10] Cheung K Y, Miao Q. Polycyclic Arenes and Heteroarenes. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. 85.
[11] Treibs W, Klinkhammer H J. Chem. Ber., 1950, 83:367.
[12] Bergmann E D, Agranat I. J. Chem. Soc. C, 1971, 3532.
[13] Nenajdenko V G, Baraznenok I L, Balenkova E S. J. Org. Chem., 1998, 63:6132.
[14] Choi Y L, Yu C M, Kim B T, Heo J N. J. Org. Chem., 2009, 74:3948.
[15] Bergmann E D, Ikan R. J. Org. Chem., 1963, 28:3341.
[16] Agranat I, Avnir D. J. Chem. Soc. Perkin Trans. 1, 1974, 1155.
[17] Jones W M, Ennis C L. J. Am. Chem. Soc., 1967, 89:3069.
[18] Jones W M, Ennis C L. J. Am. Chem. Soc., 1969, 91:6391.
[19] Halton B, Buckland S J, Lu Q, Mei Q, Stang P J. J. Org. Chem., 1988, 53:2418.
[20] Agranat I, Cohen S, Isaksson R, Sandstroem J, Suissa M R. J. Org. Chem., 1990, 55:4943.
[21] Asao T, Morita N, Kato K. Heterocycles, 1978, 11:287.
[22] Komatsu K, Fujiura R, Okamoto K. J. Org. Chem., 1988, 53:3849.
[23] Ostrowski S, Makosza M. Liebigs Ann. Chem., 1989, 95.
[24] Minabe M, Tomiyama T, Nozawa T, Noguchi M, Nakao A, Oba T, Kimura T. Bull. Chem. Soc. Jpn., 2001, 74:1093.
[25] Bergmann E D. Chem. Rev., 1968, 68:41.
[26] Wang Z X, Xing Y J, Shao H X, Lu P, Weber W P. Org. Lett., 2005, 7:87.
[27] Zheng G R, Wang Z X, Tang L, Lu P, Weber W P. Sens. Actuators B, 2007, 122:389.
[28] Boekelheide V, Langeland W E, Liu C T. J. Am. Chem. Soc., 1951, 73:2432.
[29] Boekelheide V, Vick G K. J. Am. Chem. Soc., 1956, 78:653.
[30] Cava M P, Schlessinger R H. J. Am. Chem. Soc., 1963, 85:835.
[31] Vogel E, Neumann B, Klug W, Schmickler H, Lex J. Angew. Chem. Int. Ed., 1985, 24:1046.
[32] Murata I, Nakasuji K, Yamamoto K, Nakazawa T, Kayane Y, Kimura A, Hara O. Angew. Chem. Int. Ed., 1975, 14:170.
[33] Jutz C, Kirchlechner R. Angew. Chem. Int. Ed., 1966, 5:516.
[34] Nakasuji K, Todo E, Murata I. Angew. Chem. Int. Ed., 1977, 16:784.
[35] Bestmann H J, Ruppert D. Angew. Chem. Int. Ed., 1968, 7:637.
[36] Eishiro T, Kagetoshi Y, Ichiro M. Chem. Lett., 1979, 8:537.
[37] Yamaguchi Y, Ogawa K, Nakayama K I, Ohba Y, Katagiri H. J. Am. Chem. Soc., 2013, 135:19095.
[38] Yao J J, Cai Z X, Liu Z T, Yu C M, Luo H W, Yang Y, Yang S F, Zhang G X, Zhang D Q. Macromolecules, 2015, 48:2039.
[39] Sugihara Y, Saito J, Murata I. Angew. Chem. Int. Ed., 1991, 30:1174.
[40] Yang X J, Liu D Q, Miao Q. Angew. Chem. Int. Ed., 2014, 53:6786.
[41] Yang X J, Shi X L, Aratani N, Goncalves T P, Huang K W, Yamada H, Chi C Y, Miao Q. Chem. Sci., 2016, 7:6176.
[42] Doering W V E, Knox L H. J. Am. Chem. Soc., 1954, 76:3203.
[43] Asai K, Fukazawa A, Yamaguchi S. Chem. Eur. J., 2016, 22:17571.
[44] Weis J G, Swager T M. ACS Macro. Lett., 2015, 4:138.
[45] Malandra J L, Mills N S, Kadlecek D E, Lowery J A. J. Am. Chem. Soc., 1994, 116:11622.
[46] Dahl B J, Mills N S. J. Am. Chem. Soc., 2008, 130:10179.
[47] Piekarski A M, Mills N S, Yousef A. J. Am. Chem. Soc., 2008, 130:14883.
[48] Oshima H, Fukazawa A, Sasamori T, Yamaguchi S. Angew. Chem. Int. Ed., 2015, 54:7636.
[49] Kolc J, Michl J. J. Am. Chem. Soc., 1973, 95:7391.
[50] Asai K, Fukazawa A, Yamaguchi S. Angew. Chem. Int. Ed., 2017, 56:6848.
[51] Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc., 1983, 105:7171.
[52] Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew. Chem. Int. Ed., 1991, 30:1173.
[53] Kawasumi K, Zhang Q Y, Segawa Y, Scott L T, Itami K. Nat. Chem., 2013, 5:739.
[54] Cheung K Y, Xu X M, Miao Q. J. Am. Chem. Soc., 2015, 137:3910.
[55] Gu X, Li H Y, Shan B W, Liu Z F, Miao Q. Org. Lett., 2017, 19:2246.
[56] Fujikawa T, Segawa Y, Itami K. J. Org. Chem., 2017, 82:7745.
[57] Fukui N, Kim T, Kim D, Osuka A. J. Am. Chem. Soc., 2017, 139:9075.
[58] Luo J Y, Xu X M, Mao R X, Miao Q. J. Am. Chem. Soc., 2012, 134:13796.
[59] Ip H W, Ng C F, Chow H F, Kuck D. J. Am. Chem. Soc., 2016, 138:13778.
[60] Wong W S, Ng C F, Kuck D, Chow H F. Angew. Chem. Int. Ed., 2017, 56:12356.
[61] Copland D, Leaver D, Menzies W B. Tetrahedron Lett., 1977, 18:639.
[62] Mughal E U, Kuck D. Chem. Commun., 2012, 48:8880.
[63] Fu W C, Wang Z, Chan W T K, Lin Z Y, Kwong F Y. Angew. Chem. Int. Ed., 2017, 56:7166.
[64] Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, Gómez-Bengoa E, González M T, Martin R. Cuerva J M, Campaña A G. Chem. Sci., 2017, 8:1068.
[65] Pillekamp M, Alachraf W, Oppel I M, Dyker G. J. Org. Chem., 2009, 74:8355.
[66] Dong J X, Zhang H L. Chin. Chem. Lett., 2016, 27:1097.
[67] Xin H S, Gao X K. ChemPlusChem, 2017, 82:945.
[68] Shevyakov S V, Li H, Muthyala R, Asato A E, Croney J C, Jameson D M, Liu R S H. J. Phys. Chem. A, 2003, 107:3295.
[69] Qi D D, Zhang L J, Zhang Y X, Bian Y Z, Jiang J Z. J. Phys. Chem. A, 2010, 114:13411.
[70] Nöll G, Amthor S, Avola M, Lambert C, Daub J. J. Phys. Chem. C, 2007, 111:3512.
[71] Murai M, Ku S Y, Treat N D, Robb M J, Chabinyc M L, Hawker C J. Chem. Sci., 2014, 5:3753.
[72] Wang F, Lin T T, He C, Chi H, Tang T, Lai Y H. J. Mater. Chem., 2012, 22:10448.
[73] Yamaguchi Y, Takubo M, Ogawa K, Nakayama K I, Koganezawa T, Katagiri H. J. Am. Chem. Soc., 2016, 138:11335.
[74] Xin H S, Ge C W, Yang X D, Gao H L, Yang X C, Gao X K. Chem. Sci., 2016, 7:6701.
[75] 辛涵申(Xin H S),葛从伍(Ge C W), 傅丽娜(Fu L N), 杨笑迪(Yang X D), 高希珂(Gao X K).有机化学(Chinese Journal of Organic Chemistry), 2017, 37:711.
[76] Xin H S, Ge C W, Jiao X, Yang X D, Rundel K, McNeill C R, Gao X K. Angew. Chem. Int. Ed., DOI:10.1002/anie.201711802.
[77] Xia H, Liu D Q, Song K S, Miao Q. Chem. Sci., 2011, 2:2402.
[78] Mackay A L, Terrones H. Nature, 1991, 352:762.
[79] Lenosky T, Gonze X, Teter M, Elser V. Nature, 1992, 355:333.
[80] lijima S, Ichihashi T, Ando Y. Nature, 1992, 356:776.
[81] Beuerle F, Herrmann C, Whalley A C, Valente C, Gamburd A, Ratner M A, Stoddart J F. Chem. Eur. J., 2011, 17:3868.
[82] Wang X Q, Yu S P, Lou Z Y, Zeng Q, Yang M L. Phys. Chem. Chem. Phys., 2015, 17:17864.
[83] Segawa Y, Ito H, Itami K. Nat. Rev. Mater., 2016, 1:15002.
[84] Zhang X H, Li C, Wang W B, Cheng X X, Wang X S, Zhang B W. J. Mater. Chem., 2007, 17:642.
[85] Chen Y, Zhu Y Q, Yang D B, Zhao S L, Zhang L, Yang L, Wu J L, Huang Y, Xu Z, Lu Z Y. Chem. Eur. J., 2016, 22:14527.
[86] Umeyama T, Watanabe Y, Miyata T, Imahori H. Chem. Lett., 2015, 44:47.
[87] Nishimura H, Ishida N, Shimazaki A, Wakamiya A, Saeki A, Scott L T, Murata Y. J. Am. Chem. Soc., 2015, 137:15656.
[88] Puodziukynaite E, Wang H W, Lawrence J, Wise A J, Russell T P, Barnes M D, Emrick T. J. Am. Chem. Soc., 2014, 136:11043.
[89] Grellmann K H, Heilbronner E, Seiler P, Weller A. J. Am. Chem. Soc., 1968, 90:4238.
[90] Amir E, Amir R J, Campos L M, Hawker C J. J. Am. Chem. Soc., 2011, 133:10046.
[91] Koch M, Blacque O, Venkatesan K. J. Mater. Chem. C, 2013, 1:7400.
[92] Wang F, Lai Y H, Han M Y. Macromolecules, 2004, 37:3222.
[93] Wang X, Ng J K P, Jia P, Lin T, Cho C M, Xu J, Lu X, He C. Macromolecules, 2009, 42:5534.
[94] Murai M, Amir E, Amir R J, Hawker C J. Chem. Sci., 2012, 3:2721.
[95] Zhou Y Y, Zhuang Y P, Li X, Agren H, Yu L, Ding J D, Zhu L L. Chem. Eur. J., 2017, 23:7642.
[96] Luo J Y, Song K S, Gu F L, Miao Q. Chem. Sci., 2011, 2:2029.
[97] Chen W C, Lee Y W, Chen C T. Org. Lett., 2010, 12:1472.
[98] Letizia J A, Salata M R, Tribout C M, Facchetti A, Ratner M A, Marks T J. J. Am. Chem. Soc., 2008, 130:9679.
[99] Guo X G, Ortiz R P, Zheng Y, Hu Y, Noh Y Y, Baeg K J, Facchetti A, Marks T J. J. Am. Chem. Soc., 2011, 133:1405.
[100] Guo X G, Zhou N J, Lou S J, Hennek J W, Ponce O R, Butler M R, Boudreault P L T, Strzalka J, Morin P O, Leclerc M, Lopez N J T, Ratner M A, Chen L X, Chang R P H, Facchetti A, Marks T J. J. Am. Chem. Soc., 2012, 134:18427.
[101] Zhou N, Guo X, Ortiz R P, Li S, Zhang S, Chang R P H, Facchetti A, Marks T J. Adv. Mater., 2012, 24:2242.
[102] Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Adv. Mater., 2016, 28:6921.
[103] Wang Y, Guo H, Ling S, Arrechea-Marcos I, Wang Y, Lopez Navarrete J T, Ponce Ortiz R, Guo X. Angew. Chem. Int. Ed., 2017, 56:9924.
[104] Wang Y F, Yan Z L, Guo H, Uddin M A, Ling S H, Zhou X, Su H M, Dai J F, Woo H Y, Guo X G. Angew. Chem. Int. Ed., 2017, 56:15304.
[105] Melkonyan F S, Zhao W, Drees M, Eastham N D, Leonardi M J, Butler M R, Chen Z H, Yu X E, Chang R P H, Ratner M A, Facchetti A F, Marks T J. J. Am. Chem. Soc., 2016, 138:6944.
[106] He X M, Borau-Garcia J, Woo A Y Y, Trudel S, Baumgartner T. J. Am. Chem. Soc., 2013, 135:1137.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[10] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[11] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[12] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.