中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (9): 1251-1259 DOI: 10.7536/PC150212 Previous Articles   Next Articles

Special Issue: 酶化学

• Review and comments •

Enzyme Immobilized on Carbon Nanotubes

Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi*   

  1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National High Technology Research and Development of China (No.2011AA02A209) and the National Science Foundation for Distinguished Young Scholars of China (No. 21225626).
PDF ( 1476 ) Cited
Export

EndNote

Ris

BibTeX

In the technology of enzyme immobilization, the choice of carrier material is very important for the catalytic performance of enzyme. As a new type of high efficient enzyme immobilization carrier with larger specific surface area, ordered nano pore structure, good mechanical/electrical/thermal performance, outstanding chemical stability, biocompatibility and controllable surface functional modifications, carbon nanotubes are used more and more extensively. The recent research progress of enzyme immobilization on carbon nanotubes is reviewed in this paper, focusing on the immobilization of hydrolases and oxido-reductases, which have important industrial application value. The influence of surface modification of carrier and immobilizationmethods on the catalytic properties of immobilized enzymes is introduced. The outlook of potential applications of enzyme immobilization on carbon nanotubes is also prospected.

Contents
1 Introduction
2 Research of enzyme immobilization on carbon nanotubes
2.1 Hydrolase immobilization on carbon nanotubes
2.2 Oxido-reductase immobilization on carbon nanotubes
2.3 Other kinds of enzymes immobilization on carbon nanotubes
2.4 The application of immobilized enzymes in the biosensors
3 Conclusions

CLC Number: 

[1] Kohler V, Tumer N J. Chem. Commun., 2015, 51(3): 450.
[2] Reetz M T. J. Am. Chem. Soc., 2013, 135(34): 12480.
[3] Zheng G W, Xu J H. Curr. Opin. Biotechnol., 2011, 22(6): 784.
[4] DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42(15): 6437.
[5] Sheldon R A, Sander V P. Chem. Soc. Rev., 2013, 42(15): 6223.
[6] Carlsson N, Gustafsson H, Thorn C, Olsson L, Holmberg K, Akerman B. Adv. Colloid Interface Sci., 2014, 205: 339.
[7] Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42(9): 3894.
[8] Min K, Yoo Y J. Biotechnol. Bioproc. Eng., 2014, 19(4): 553.
[9] Mehra N K, Mishra V, Jain N K. Biomaterials, 2014, 35(4): 1267.
[10] Valentini F, Carbone M, Palleschi G. Anal. Bioanal. Chem., 2013, 405(2/3): 451.
[11] Ding Y, Huang H, Hu Y. Chin. J. Org. Chem., 2013, 33(5): 905.
[12] Adlercreutz P. Chem. Soc. Rev., 2013, 42(15): 6406.
[13] Verma M L, Naebe M, Barrow C J, Puri M. PLoS One, 2013, 8(9): 1.
[14] Rastian Z, Khodadadi A A, Vahabzadeh F, Bortolini C, Dong M D, Mortazavi Y, Mogharei A, Naseh M V, Guo Z. Biochem. Eng. J., 2014, 90: 16.
[15] Lee S H, Doan T T N, Won K, Ha S H, Koo Y M. J. Mol. Catal. B: Enzym., 2010, 62(2): 169.
[16] Raghavendra T, Vahora U, Shah A R, Madamwar D. Biotechnol. Prog., 2014, 30(4): 828.
[17] Tan H S, Feng W, Ji P J. Bioresour. Technol., 2012, 115: 172.
[18] Ji P J, Tan H S, Xu X, Feng W. Bioeng. Food Nat. Prod., 2010, 56: 3005.
[19] Ke C X, Li X, Huang S S, Xu L, Yan Y J. RSC Adv., 2014, 4(101): 57810.
[20] Li L L, Feng W, Pan K H. Colloids Surf. B., 2013, 102: 124.
[21] Lee H K, Lee J K, Kim M J, Lee C J. Bull. Korean Chem. Soc., 2010, 31(3): 650.
[22] Shen E, Qu Y Y, Zhou H, Kong C L, Ma Q, Zhang X W, Zhou J T. Chin. J. Catal., 2013, (34): 723.
[23] Tiwari A, Dhakate S R. Int. J. Biol. Macromol., 2009, 44(5): 408.
[24] Zhao G H, Li Y F, Wang J Z, Zhu H. Appl. Microbiol. Biotechnol., 2011, 91(3): 591.
[25] Gòmez J M, Romero M D, Fernández T M. Catal. Lett., 2005, 101(3/4): 275.
[26] Mohiuddin M, Arbain D, Islam A K M S, Rahman M, Ahmad M S, Ahmad M N. Curr. Nanosci., 2014, 10(5): 730.
[27] Ansari S A, Satar R, Chibber S, Khan M J. J. Mol. Catal. B: Enzym., 2013, 97: 258.
[28] Garlet T B, Weber C T, Klaic R, Foletto E L, Jahn S L, Mazutti M A, Kuhn R C. Molecules, 2014, 19(9): 14615.
[29] Feng W, Sun X C, Ji P J. Soft Matter, 2012, 8(27): 7143.
[30] Sun J, Du K, Fu L, Gao J, Zhang H Y, Feng W, Ji P J. Appl. Mater. Interfaces., 2014, 6(17): 15132.
[31] Muthurasu A, Ganesh V. Appl. Biochem. Biotechnol., 2014, 174(3): 945.
[32] 毛新焕(MaoX H), 李响(Li X), 王姗姗( Wang S S), 张文静(Zhang W J), 曾成鸣(Zeng C M).生物工程学报(Chin. J. Biotech.), 2009, 25 ( 3 ): 388.
[33] Kim B J, Kang B K, Bahk Y Y, Yoo K H, Lim K J. Curr. Appl. Phys., 2009, 9(4): E263.
[34] Li Y, Huang X R, Qu Y B. J. Chem. Technol. Biotechnol., 2013, 88(12): 2227.
[35] Lee Y M, Kwon O Y, Yoon Y J, Ryu1 K. Biotechnol. Lett., 2006, 28(1): 39.
[36] 唐艳(Tang Y), 石鑫(Shi X), 冯春梁(Liang C L). 中国材料科技与设备(Chin. Mater. Sci. Technol. Equip.), 2011, 7(2): 15.
[37] 卿三红(Qing S H), 方柏山(Fang B S). 华侨大学学报(自然科学版)(Journal of Huaqiao University(Natural Science)), 2011, 32(5): 554.
[38] Wang L A, Wei L, Chen Y A, Jiang R R. J. Biotechnol., 2010, 150(1): 57.
[39] Wang L A, Xu R, Chen Y A, Jiang R R. J. Mol. Catal. B: Enzym., 2011, 69(3/4): 120.
[40] Couto S R, Herrera J L T. Biotechnol. Adv., 2006, 24 (5): 500.
[41] Trohalaki S, Pachter R, Luckarift H R, Johnson G R. Fuel Cells, 2012, 12(4): 656.
[42] Pang R, Li M Z, Zhang C D. Talanta, 2015, 131: 38.
[43] Dubey K K, Narayan A, Kumar D, Kumar P. J. Comput. Thero. Nanos., 2014, 11(8): 1812.
[44] Quan J, Liu Z Q, Branford-White C, Nie H L, Zhu L M. Colloids Surf. B, 2014, 121: 417.
[45] Zhang C D, Luo S M, Chen W. Talanta, 2013, 113: 142.
[46] Tiwari A. J. Inorg. Organomet. Polym., 2009, 19(3): 361.
[47] Mubarak N M, Wong J R, Tan K W, Sahu J N, Abdullah E C, Jayakumar N S, Ganesane P. J. Mol. Catal. B: Enzym., 2014, 107: 124.
[48] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Botta G,Antiochia R, Saladino R. ACS Catal., 2014, 4(9): 3059.
[49] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R. ACS Catal., 2014, 4(3): 810.
[50] Zhu L, Xu L L, Tan L, Tan H, Yang S F, Yao S Z. Talanta, 2013, 106: 192.
[51] Wang Y L, Li T Y, Zhang W J, Huang Y Q. J. Solid State Electrochem., 2014, 18(7): 1981.
[52] Kacar C, Dalkiran B, Erden P E, Kilic E. Appl. Surf. Sci., 2014, 311: 139.
[53] Arora K, Choudhary M, Malhotra B D. Appl. Biochem. Biotechnol., 2014, 174(3): 1174.
[54] Moyo M, Okonkwo J O, Agyei N M. Enzyme Microb. Technol., 2014, 56: 28.
[55] Neto S A, Almeida T S, Belnap D M, Minteer S D, de Andrade A R. Enzyme Microb. Technol., 2014, 273: 1065.
[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[5] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[6] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[7] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[8] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[9] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[10] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[11] Danbi Tian, Shengnan Wu, Hao Zhang, Ling Jiang, Fengwei Huo. Application of Inner Filter Effect Technology in Biological Detection and Disease Markers [J]. Progress in Chemistry, 2019, 31(2/3): 413-421.
[12] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[13] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[14] Chenxi Liang, Lixin Cao*, Yuejuan Zhang, Peisheng Yan. Electrochemical Biosensors for Marine Toxins Analysis [J]. Progress in Chemistry, 2018, 30(7): 1028-1034.
[15] Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*. Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments [J]. Progress in Chemistry, 2018, 30(5): 628-638.
Viewed
Full text


Abstract

Enzyme Immobilized on Carbon Nanotubes