中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 528-540 DOI: 10.7536/PC150913 Previous Articles   Next Articles

• Review and comments •

Recent Advances of the Water-Soluble Conjugated Polymer Brushes

Lu Xiaomei1*, Li Jie1, Hu Wenbo2, Deng Weixing2, Fan Quli2, Huang Wei1,2*   

  1. 1. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
    2. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Basic Research Program of China(973)(No. 2012CB723402)and the National Natural Science Foundation of China(No. 21222404, 51173080, 21104033, 21574064).
PDF ( 2220 ) Cited
Export

EndNote

Ris

BibTeX

Water-soluble conjugated polymers (WSCPs) have been widely used in chemical and biological sensing owning to their intriguing optoelectronic and biocompatible properties. However, these linear WSCPs suffer from the general drawbacks of low water-solubility and fluorescence quantum efficiency. Polymer brushes is a kind of unique macromolecules with a linear polymeric backbone and densely grafted side chains. Developing water-soluble conjugated polymer brushes (WSCPBs) is highly anticipated to solve the above mentioned problems. This article reviews the synthetic protocol and structure-properties relationship of WSCPBs to guide the design and preparation of new WSCPBs. In addition, we highlight the applications of WSCPBs in terms of sensor, bioimaging, drug delivery and surfactant. Finally, the future opportunities and challenges of WSCPBs are discussed.

Contents
1 Introduction
2 The synthesis of water-soluble conjugated polymer brushes
2.1 Grafting from approach
2.2 Grafting onto approach
2.3 Grafting through approach
3 Structure-properties relationship of water-soluble conjugated polymer brushes
3.1 Effects of conjugated backbone
3.2 Effects of graft side chains
4 Application of water-soluble conjugated polymer brushes
4.1 Sensor
4.2 Bioimaging
4.3 Drug delivery
4.4 Surfactant
5 Conclusion and outlook

CLC Number: 

[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Homes A B. Nature, 1990, 347:539.
[2] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295:2425.
[3] Gaylord B S, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2003, 125:896.
[4] Ho H A, Leclerc M. J. Am. Chem. Soc., 2003, 125:4412.
[5] Sun P F, Lin M C, Zhao Y, Chen G S, Jiang M. Colloids and Surfaces B: Biointerfaces,2015, 133:12.
[6] Feng F D, He F, An L L, Wang Shu, Li Y L, Zhu D B. Adv. Mater., 2008, 20:2959.
[7] He F, Tang Y L, Wang S, Li Y L, Zhu D B. J. Am. Chem. Soc., 2005, 127:12343.
[8] Li Z, Geng J L, Wang G, Liu J, Liu B. Polym. Chem., 2013, 4:5243.
[9] Yin C, Song W L, Jiang R C, Lu X M, Hu W B, Shen Q M, Li X, Li J, Fan Q L, Huang W. Polym. Chem., 2014, 5:5598.
[10] Lu X M, Wei A, Fan Q L, Wang L H, Chen P, Dong X C, Huang W. Mater. Res. Bull., 2012, 47:4335.
[11] Pu K Y, Li K, Liu B. Adv. Funct. Mater., 2010, 20:2770.
[12] 蔡小慧(Cai X H), 石琳(Shi L), 刘兴奋(Liu X F),黄艳琴(Huang Y Q), 范曲立(Fan Q L), 黄维(Huang W).化学进展(Progress in Chemistry), 2013, 25(6):975.
[13] Hadasha W, Klumperman B. Polym. Int., 2014, 63:824.
[14] 张磊(Zhang L), 李文(Li W), 张阿方(Zhang A F). 化学进展(Progress in Chemistry), 2006,18(7):939.
[15] Zhang Z Y, Lu X M, Fan Q L, Hu W B, Huang W. Polym. Chem., 2011, 2:2369.
[16] Li Y C, Nese A, Hu X Q, Lebedeva N V, LaJoie T W, Burdyńska J, Stefan M C, You W, Yang W T, Matyjaszewski K, Sheiko S S. ACS Macro Lett., 2014, 3:738.
[17] WangWang M F, Zou S, Guerin S, Guerin GG, Shen LL, Deng K QK Q, Jones MM, Walker G C,G C, Scholes G D, G D, Winnik M A. M A. Macromolecules, 2008, 41:6993.
[18] Balamurugan S S, Bantchev G B, Yang Y M, McCarley R L. Angew. Chem. Int. Ed., 2005, 44:4872.
[19] Hawker C J, Bosman A W, Harth E. Chem. Rev., 2001, 101:3661.
[20] Wang Y Q, Wilson J N, Smith M D, Bunz U H.F. Macromolecules, 2004, 37:9701.
[21] An Z S, Shi Q H, Tang W, Tsung C K, Hawker C J, Stucky G D. J. Am. Chem. Soc., 2007, 129:14493.
[22] Sheiko S S, Sumerlin B S, Matyjaszewski K. Prog. Polym. Sci., 2008, 33:759.
[23] Fruth A, Klapper M, Müllen K, Macromolecules, 2010, 43:467.
[24] Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem. Rev., 2012, 112:4687.
[25] Stayton P S, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J M, Hoffman A S. Nature, 1995, 378:472.
[26] Das S, Samanta S, Chatterjee D P, Nandi A K. J. Polym. Sci A Polym. Chem., 2013, 51:1417.
[27] Feng X L, Tang Y L, Duan X R, Liu L B, Wang S. J. Mater. Chem., 2010, 20:1312.
[28] Zhang Z Y, Fan Q L, Sun P F, Liu L L, Lu X M, Li B, Quan Y W, Huang W. Macromol. Rapid Commun., 2010, 31:2160.
[29] Liu X F, Shi L, Zhang Z Y, Fan Q L, Huang Y Q, Su S, Fan C H, Wang L H, Huang W. Analyst, 2015, 140:1842.
[30] Li J, Tian C C, Yuan Y, Yang Z, Yin C, Jiang R C, Song W L, Li X, Lu X M, Zhang L, Fan Q L, Huang W. Macromolecules, 2015, 48:1017.
[31] Pu K Y, Liu B. Adv. Funct. Mater., 2011, 21:3408.
[32] Jiang R C, Lu X M, Yang M H, Deng W X, Fan Q L, Huang W. Biomacromolecules, 2013, 14:3643.
[33] Ding D, Li K, Zhu Z S, Pu K Y, Hu Y, Jiang X Q, Liu B. Nanoscale, 2011 , 3:1997.
[34] Hu W B ,Lu X M, Jiang R C, Fan Q L, Zhao H, Deng W X, Zhang L, Huang L, Huang W. Chem. Commun., 2013, 49:9012.
[35] Lu X M, Jiang R C, Yang M H, Fan Q L, Hu W B, Zhang L, Yang Z, Deng W X, Shen Q M, Huang Y Q, Liu X F, Huang W. J. Mater. Chem. B, 2014, 2:376.
[36] Pu K Y, Shuhendler A J, Jokerst J V, Mei J G, Gambhir S S, Bao Z N, Rao J H. Nat. Nanotechnol., 2014, 9:233.
[37] Hong G S, Zou Y P, Antaris A L, Diao S, Wu D, Cheng K, Zhang X D, Chen C X, Liu B, He Y H, Wu J Z, Yuan J, Zhang B, Tao Z M, Fukunaga C, Dai H J. Nat. Commun., 2014, 5:4206.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[4] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[5] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[6] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[7] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[8] Yang Wang, Chusen Huang, Nengqin Jia. Molecular Fluorescent Probe for Monitoring Cellular Microenvironment and Active Molecules [J]. Progress in Chemistry, 2020, 32(2/3): 204-218.
[9] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[10] Kangqiang Qiu, Hongyi Zhu, Liangnian Ji, Hui Chao. Real-Time Luminescence Tracking in Living Cells with Metal Complexes [J]. Progress in Chemistry, 2018, 30(10): 1524-1533.
[11] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[12] Chibao Huang*, Shaoying Chen. Two-Photon Fluorescence Probe [J]. Progress in Chemistry, 2017, 29(10): 1215-1227.
[13] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[14] Dong Shibiao, Jiao Xiong, Zhao Rongtao, Xu Jinkun, Song Hongbin, Hao Rongzhang. The DNA Tetrahedron Nanostructure Materials and Their Applications [J]. Progress in Chemistry, 2015, 27(9): 1191-1197.
[15] Chen Feng, Zhu Yingjie. Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase [J]. Progress in Chemistry, 2015, 27(5): 459-471.