中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (4): 385-394 DOI: 10.7536/PC141029 Previous Articles   Next Articles

• Review and evaluation •

Synthetic Methods for Poly(thiophene)s

Shu Xin, Li Zhaoxiang, Xia Jiangbin*   

  1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received: Revised: Online: Published:
PDF ( 6590 ) Cited
Export

EndNote

Ris

BibTeX

Since Shirakawa et al discovered that polyacetylene can reach extremely high conductivities, the polymer material has no longer been regarded as electrical insulators. Subsequently, the discovery of polyaniline, polypyrrole, poly(thiophene) expanded the type of conductive polymer. In addition, the conductive polymer has promising application in the fields such as electrode material, solar cell, and other applications, and some of them have achieved the commercialization. Among them, poly(thiophene)s has been widely concerned because of their good stability, easy preparation and good characteristics of photoelectrochemical performance after doping. Thus, in this review, several synthetic methods for poly(thiophene)s and their derivatives are reviewed, including chemical oxidation polymerization, electrochemical synthesis, and so on, especially the newly developed solid state polymerization and acid-assisted polymerization. Their synthesis mechanism, the advantages and disadvantages are also discussed.

Contents
1 Introduction
2 Synthetic methods
2.1 Chemical oxidation polymerization and electrochemical polymerization
2.2 Metal-catalysed polymerization
2.3 Photo-induced polymerization
2.4 Photo-electrochemically polymerization
2.5 Solid state polymerization
2.6 Acid-assisted polymerization
3 Conclusion and outlook

CLC Number: 

[1] (a)Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J. Chem. Commun., 1997, 16: 578.; (b) Handbook of Conducting Polymers. 2nd ed. Marcel Dekker: New York, 1998.; (c)Nalwa H S. Handbook of Organic Conductive Molecules and Polymer. Chichester, 1997, 1.
[2] Diaz A F, Kanazawa K K, Gardini G P. Chem. Commun., 1979, 14: 635.
[3] Diaz A F. Chem. Scr., 1981, 17: 145.
[4] Tourillon G, Garnier F J. J. Electroanal. Chem., 1982, 135(1): 173.
[5] Joachim B, Shamsher M, Robert J. IBM J. Res. Develop., 1983, 27(4): 330.
[6] Sharma P S, Pietrzyk-Le A, Souza F D, Kutner W. Anal. Bioanal. Chem., 2012, 402(10): 3177.
[7] Joelle R B, Jacques S. J. Electroanal. Chem., 1985, 182(1): 187.
[8] Naarmann H. Polymers, Electrically Conduction in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.
[9] Pei Q B, Yang Y G, Zhang C, Heeger A J. J. Am. Chem. Soc., 1996, 118(16): 3922.
[10] Wang H L, Huang F, MacDiarmid A G, Wang Y Z, Gebler D D, Epstein A J. Synth. Met., 1996, 80(2): 97.
[11] Xia J B, Masaki N, Jiang K, Yanagida S. J. Mater. Chem., 2007, 17(27): 2845.
[12] Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18): 2436.
[13] Yoshino K, Hayashi S, Sugimoto R.Japanese Journal of Applied Physics, Part2:Letters, 1984, 23(12): 899.
[14] Tourillon G, Garnier F. J. Electroanal. Chem., 1982, 135(1): 173
[15] Xu Z G, Gilles H, Francis G. J. Electroanal. Chem., 1988, 246(2): 467.
[16] Genies E M, Bidan G, Diaz A F. J. Electroanal. Chem., 1983, 149(1/2): 101.
[17] Abdulla H S. Int. J. Electrochem. Sci., 2013, 8(10): 11782.
[18] Hillman A R, Elizabeth F J. Electroanal. Chem., 1988, 243(2): 403.
[19] Tourillon G, Garnier F. J. Phys. Chem., 1983, 87(13): 2289.
[20] Waltman R J, Joachim B, Diaz A F. J. Phys. Chem., 1983, 87(8): 1459.
[21] Roncali J, Yaaaar A, Garnier F Z. Chem. Commun., 1988, 9: 581.
[22] Yaaaar A, Roncali J, Garnier F. Macromolecules, 1989, 22: 804.
[23] Hotta S, Hosaka T, Shimotsuma W. Synth. Met., 1983, 6: 317.
[24] Tanaka S, Sato M, Kaeriyama K. Makromol. Chem., 1984, 185: 1295.
[25] Sato M, Tanaka S, Kaeriyama K. J. Chem. Soc. Chem. Commun., 1985, 713.
[26] (a) Shi G Q, Jin S, Xue G, Li C. Science, 1995, 267: 994.; (b) Shi G Q, Shi G Q, Chun L, Liang Y Q. Adv. Mater., 1999, 11: 131145.;(c) Fu M X, Zhu Y F, Tan R Q, Shi G Q. Adv. Mater., 2001, 13: 1874.; (d) Li C, Bai H, Shi G Q. Chem. Soc. Rev., 2009, 38: 2397.
[27] Kochi J K, Tamura Masuhiko.J.Am.Chem.Soc., 1971, 93(6): 1483.
[28] Masuhiko T, Kochi J K. J. Am. Chem. Soc., 1971, 93(6): l487.
[29] Yamamoto T, Sanechika K, Yamamoto A. J. Polym. Sci. C: Polym. Lett., 1980, 18(1): 9.
[30] Lin J W P, Dudek L P. J. Polym. Sci. A: Polym. Chem., 1980, 18(9): 2869.
[31] Pei J, Ni J, Zhou X H, Cao X Y, Lai Y H. J. Org. Chem. 2002, 67: 4924.
[32] Chen T A, Wu X M, Rieke R D. J. Am. Chem. Soc. 1995, 117(1): 233.
[33] Chen T A, Rieke R D. J. Am. Chem. Soc., 1992, 114(25): 10087.
[34] McCullough R D, Lowe R D. J. Chem. Soc. Chem. Commun., 1992, 1: 70.
[35] McCullough R D, Williams S P, Tristram-Nagle S, Jayaraman M. Synth. Met., 1995, 69(1/3): 279.
[36] Loewe R S, Khersonsky S M, McCullough R D. Adv. Mater., 1999, 11(3): 250.
[37] Ullmann F, Bielecki J. Berichte der Deuts-chen Chemischen Gesellschaft, 1901, 34: 2174.
[38] Pomerantz M, Yang H, Cheng Y. Macromolecules, 1995, 28(17): 5706.
[39] Pomerantz M, Cheng Y, Kasim R K, Elsenbaumer R L. J. Mater. Chem., 1999, 9(9): 2155.
[40] Castro C E, Stephenes R D. J. Org. Chem., 1963, 28(8): 2163.
[41] Stephens R D, Castro C E. J. Org. Chem., 1963, 28(12): 3313.
[42] Cassar L. J. Organomet. Chem., 1975, 93(2): 253.
[43] Sonogashira K, Tohda Y, Hagihara N. Tetrahedron. Lett., 1975, 50: 4467.
[44] Coombs B A, Rutter S R, Goeta A E, Sparkes H A, Batsanov A S, Beeby A. RSC. Adv., 2012, 2: 1870.
[45] (a) Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn., 1971, 44(2): 581.; (b) Heck R F, Nolley J P. J. Org. Chem., 1972, 37(14): 2320.
[46] Hassan J, Schulz E, Gozzi C, Lemaire M. J. Mol. Cataly. A: Chem., 2003, 195: 125.
[47] Guillerez S, Bidan G. Synth. Met., 1998, 93: 123.
[48] Rehahn M, Schlüter A D, Wegner G Feast W J. Polymer, 1989, 30: 1060
[49] Kosugi M, Shimizu Y, Migita T. Chem. Lett., 1977, 12: 1423.
[50] Milstein D, Stille J K. J. Am. Chem. Soc., 1978, 100(11):3636.
[51] Bochmann M, Kelly K. J. Chem. Soc. Chem. Commum., 1989, 9: 532.
[52] Giesa R, Schulz R C. Makromol. Chem., 1990, 191(4): 857.
[53] Galarini R, Musco A, Pontellini R, Bolognesi A, Destri S, Cataellani M, Mascherpa M, Zhuo G. J. Chem. Soc. Chem. Commum., 1991, 6: 364.
[54] Carsten B, He F, Son H J, Xu T, Yu L P. Chem. Rev., 2011, 111: 1493.
[55] Mak C S K, Cheung W K, Leung Q Y, Chan W K. Macromol. Rapid Commum., 2010, 31(9/10): 875.
[56] Sévignon M, Papillon J, Schulz E, Lemaire M. Tetrahedron Lett., 1999, 49: 5873.
[57] Wang Q F, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc., 2010, 132: 11420.
[58] Crivello J V. Adv. Polym. Sci., 1984, 62: 1.
[59] Rabeck J F, Lucki J, Zuber M. Polymer, 1992, 33(22): 4838.
[60] Iyoda T, Kitano M, Shimidzu T. J. Chem. Soc. Chem. Commun., 1991, 22: 1618.
[61] Yagci Y, Kornowski A, Schnabel W. J. Polym. Sci. Part A: Polym. Chem., 1992, 30(9): 1987.
[62] Yagci Y, Yilmaz F, Kiralp S, Toppare L. Macromol. Chem. Phys., 2005, 206(12): 1178.
[63] Aydogan B, Gunbas G E, Durmus A, Toppare L, Yagci Y. Macromolecules, 2010, 43(1): 101.
[64] Tabei H, Fujiki M, Imamura S. Jpn. J. Appl. Phys., 1985, 24(9): 685.
[65] Okano M, Itoh K, Kikuchi E, Akira F. J. App. Phys., 1987, 62(5): 1.
[66] Murakoshi K, Kogure R, Wada Y, Yanagida S. Chem. Lett., 1997, 5: 471.
[67] Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. Electrochem. Commun., 2004, 6: 71.
[68] Xia J B, Masaki N, Lira-Cantu M, Kim Y, Jiang K J, Yanagida S. J. Am. Chem. Soc., 2008, 130: 1258.
[69] De Leeuw D M, Kraakman P, Bongaert P F G, Mutsaers C M J, Klaassen D B M. Synth. Metal., 1994, 66: 263.
[70] (a) Magat M. Polymer, 1962, 3(3): 449.;(b)Baughman R H. J. Polym. Sci.: Polym. Phys. Ed., 1974, 12: 1511.
[71] (a) Wenger G Z. Naturforsch, 1969, 24b: 824.;(b) Wegner G. Makromol. Chem., 1971, 145: 85.;(c) Enkelmann V, Schleier G, Wegner G, Eichelf H, Schwoerer M. Chem. Phys. Lett., 1977, 52(2): 314.;(d) Yee K C, Chance R R. J. Polym. Sci.: Polym. Phys. Ed., 1978, 16: 431.
[72] (a) Walatka V V, Labes M M, Perlstein J H. Phys. Rev. Lett., 1973, 31(18): 1139.; (b) Cohen M J, Garito A F, Heeger A J, MacDiarmid A G, Mikulski C M, Saran M S, Kleppinger J. J. Am. Chem. Soc., 1976, 98: 3844.
[73] Meng H, Perepichka D F, Wudl F. Angew. Chem. Int. Ed., 2003, 42: 658.
[74] Meng H, Perepichka D F, Bendikov M, Pan G Z, Yu W J, Dong W J, Brown S, Wudl F. J. Am. Chem. Soc., 2003, 125: 15151.
[75] Spencer H J, Berridge R, Crouch D J, Wrigh S P, Giles M, McCulloch I, Coles S J, Hursthouse M B, Skabara P J. J. Mater. Chem., 2003, 13: 2075.
[76] Patra A, Wijsboom Y H, Zade S S, Li M, Sheynin Y, Leitus G, Bendikov M. J. Am. Chem. Soc., 2008, 130: 6734.
[77] Chen S A, Xu J K, Lu B Y, Duan X M, Kong F F. Adv. Mater. Res., 2011, 239/242: 924.
[78] Chen S, Luo B Y, Duan X M, Xu J K. Polym. Chem., 2012, 50: 1967.
[79] Tusy C, Huang L L, Jin J P, Xia J B. RSC Adv., 2014, 4: 8011.
[80] Tusy C, Huang L L, Peng K, Xia J B. RSC Adv., 2014, 4: 29032.
[81] Walczak R M, Leonard J K, Reynolds J R. Macromolecules, 2008, 41: 691.
[82] Koh J K, Kim J, Kim B, Kim J H, Kim E. Adv. Mater., 2011, 23: 1641.
[83] Chen L, Jin J P, Shu X, Xia J B. J. Power Sources, 2014, 248: 1234.
[84] Yin X, Wu F, Fu N Q, Han J, Chen D L, Xu P, He M, Lin Y. Appl. Mater. Interfaces., 2013, 5: 8423.
[85] Wagner P, Jolley K W, Officer D L. Aust. J. Chem., 2011, 64: 335.
[86] (a) Yin Y H. Bachelor’s Thesis of Wuhan University, 2012. (b)Yin Y H, Li Z X, Jin J P, Tusy C, Xia J B. Synth. Met., 2013, 175: 97.
[87] Bonillo B, Swager T M. J. Am.Chem. Soc., 2012, 134: 18916.
[88] Balasubramanian A, Ku T C, Shih H P, Suman A, Lin H J, Shih T W, Han C C. Polym. Chem., 2014, 5: 5928
[89] Heeger A J. Chem. Soc. Rev., 2010, 39, 2354.
[1] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[2] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[3] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[4] Hu Chuanbo, Li Ying, Kong Yazhou, Ding Yushi. Anticorrosion Properties of Modified Polyanilines and Its Derivatives Coatings [J]. Progress in Chemistry, 2016, 28(8): 1238-1250.
[5] Su Dan, Di Feng, Xing Ji, Che Jianfei, Xiao Yinghong. Application of Conducting Polymers in Controlled Drug Delivery System [J]. Progress in Chemistry, 2014, 26(12): 1962-1976.
[6] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[7] Xiao Hengyang, Di Feng, Che Jianfei, Xiao Yinghong. Surface Modification and Functionalization of Neural Electrodes [J]. Progress in Chemistry, 2013, 25(11): 1962-1972.
[8] Zhu Ying, Liu Mingjie, Wan Meixiang, Jiang Lei. 3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability [J]. Progress in Chemistry, 2011, 23(5): 819-828.
[9] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[10] Tu Liangliang, Jia Chunyang. Conducting Polymers as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2010, 22(08): 1610-1618.
[11] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[12] Dong Bin Xu Jingkun Zheng Liqiang. Ionic Liquids for the Electrosyntheses of Conducting Polymers [J]. Progress in Chemistry, 2009, 21(09): 1792-1799.
[13] An Hongfang Wang Xianyou Li Na Zheng Liping Chen Quanqi. Carbon and Conducting Polymer Composites for Supercapacitors [J]. Progress in Chemistry, 2009, 21(09): 1832-1838.
[14] Shu Jianhua Qiu Wei Zheng Shaoqin. Polyaniline/Gold Nanoparticle Composites [J]. Progress in Chemistry, 2009, 21(05): 1015-1022.
[15] Chen Hui, Ma Huiru, Guan Jianguo**. Preparation of Water-Soluble Conducting Polyanilines [J]. Progress in Chemistry, 2007, 19(11): 1770-1775.
Viewed
Full text


Abstract

Synthetic Methods for Poly(thiophene)s