中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1103-1115 DOI: 10.7536/PC190209 Previous Articles   Next Articles

Solid State Polymerization of Polythiophene and Its Applications

Ni Huang1, Feng Xu2, Jiangbin Xia1,**()   

  1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received: Online: Published:
  • Contact: Jiangbin Xia
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21875173)
Richhtml ( 24 ) PDF ( 740 ) Cited
Export

EndNote

Ris

BibTeX

Due to their good stability and easy structure tailorability, as the typical type of conjugated polymers, polythiophene derivatives have played big role in organo-electronic and renewable energy involved fields. Meanwhile, solid state polymerization attracts lots of attention from researchers because of its advantages of environment benign, large-scale producibility and so on. Thus, in this review, the progresses of thiophene derivatives monomers design and reaction mechanism are reviewed, including their application involved. Furthermore, their opportunities and challenges are discussed as well.

Fig. 1 Typical conjugated polymers [13]
Fig. 2 Several methods for the preparation of polythiophene and its derivatives[37]
Fig. 3 Solid state polymerization of polybutylene[40]
Fig. 4 Solid state polymerization of S2N2[39]
Fig. 5 Poly (3, 4-ethoxythiophene) absorption spectra: (a) direct solid state polymerization; (b) by hydrazine hydrate treatment [41]
Fig. 6 (left) Solid phase polymerization equation of EDOT and its corresponding monomer and polymer photographs; (right) X-ray crystal structure (monoclinic) view of monomer DBEDOT [40]
Fig. 7 Possible reaction mechanism and process of solid state polymerization of DBEDOT[40]
Fig. 8 2, 5-dibromothiophene derivatives[42]
Fig. 9 Solid state polymerization process of poly 3, 4-ethylenedioxyselene (PEDOSe) [42]
Fig. 10 (a) Vertically designed PEDOT derivatives and (b)synthesis and solid state polymerization of DBProDOT monomer [44]
Table 1 Properties of DBEDTT and DIEDTT and their polymers obtained by solid phase polymerization[45]
Fig. 11 Molecular structure of dibromothiophene derivatives[46]
Fig. 12 (left) Polymerization of EDTM derivatives. (right) (a) DB1 X-ray single crystal structure; (b) cell stacking diagram and the distance between adjacent Br-Br atoms [48]
Table 2 The conductivity of PEDOT derivatives prepared by SSP method[47]
Fig. 13 EDOT parallel design strategy and related monomers [48,49]
Table 3 Effects of I2-3-alkyl-EDOT solid-state polymerization temperature (24 h) on molecular weight and PDI[50]
Fig. 14 An EDOT derivative of an alkyl chain of different lengths [50]
Fig. 15 Aromatic ring substituted EDOT derivative and its crystal structure [51]
Fig. 16 Monomer based on EDOT-CH (R)-EDOT model [52]
Fig. 17 (a,b) absorption spectra of polymer and de-doped polymer solutions obtained from SSP. (A,B) Cyclic voltammograms of polymer films in acetonitrile solution containing 0.1 M Bu4NClO4 were measured at different scanning rates [52]
Fig. 18 Solid state polymerization of thiophene derivative monomers based on thiophene-(CH-R)-thiophene[53]
Table 4 Melting points of several monomers, starting polymerization temperatures of SSP and MSP[53]
Fig. 19 the formula of (2R,3S)-5,7-dibromo-2,3-dimethyl-2,3-dihydrothieno[34-b][1,4]dioxine [43]
Fig. 20 Unit cell (left) and possible polymerization paths (right) [43]
Fig. 21 (a) DBProDOT crystal structure diagram; (b) DBProDOT crystal filling diagram with short contact between bromine atoms 【44]
Fig. 22 Single crystal structure and predicted polymerization route of the monomer Br2-Si-EDOT [49]
Table 5 Some important halogens/halogens and C-C spacing (?)[50,51,52]
Fig. 23 Linear relationship between initial polymerization temperature and effective halogen distance in solid phase polymerization [55]
Fig. 24 The cyclic voltammetry curves of Pt and poly (3, 4-ethylenedioxythiophene) (PEDOT) were measured in acetonitrile solution containing 10 mM LiI,1 mM I2 and 0.1 M LiClO4[57]
Fig. 25 Schematic diagram of principle and structure of perovskite solar cell[59]
Fig. 26 Doping (a) and (b) to take off the SSP-PEDOTs powder at 800 ℃ and 2600 ℃ graphitization of XRD diagrams [60]
Fig. 27 Structure and morphology of graphite fiber [60]
Fig. 28 (A) Schematic diagram of setting of electrospinning device; (B) compression of DBEDOT/ polymer fiber pad during heating process [62]
Table 6 Thickness and electrical conductivity of PEDOT/ polymer composite films prepared by SSP method[62]
Fig. 29 Schematic diagram of making PEDOT/MnO2 supercapacitor electrode based on FTO [66]
Fig. 30 Fusion polymerization of pyrrole derivatives [67]
Fig. 31 Solid state polymerization of Br-doped conjugated polymer [63]
Fig. 32 Preparation of monolayer conjugated aromatic crystalline polymer (CAP) by interfacial polymerization on gold surface [68]
[1]
Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J . Chem. Commun., 1997,16:578.
[2]
Memon M A, Bai W, Sun J H, Imran M, Phulpoto S N, Yan S, Huang Y, Geng J X . ACS Appl. Mater. Interfaces, 2016,8:11711. https://www.ncbi.nlm.nih.gov/pubmed/27110720

doi: 10.1021/acsami.6b01879 pmid: 27110720
[3]
Xiao L H, Sun J H, Liu L B, Rong H, Lu H, Cheng Chun G, Huang Y, Wang S, Geng J X . ACS Appl. Mater. Interfaces, 2017,9:5382. https://www.ncbi.nlm.nih.gov/pubmed/28112908

doi: 10.1021/acsami.6b14473 pmid: 28112908
[4]
Meng D L, Yang S J, Guo L, Li G X, Ge J C, Huang Y, Bielawski C W, Geng J X . Chem. Commun., 2014,50:14345. https://www.ncbi.nlm.nih.gov/pubmed/25286834

doi: 10.1039/c4cc06849a pmid: 25286834
[5]
Cheng C G, Jia P, Xiao L H, Geng J X . Carbon, 2019,145:668.
[6]
Hou W P, Zhao N J, Meng D L, Tang J, Zeng Y, Wu Y, Weng Y Z W, Cheng C G, Xu X L, Li Y, Zhang J P, Huang Y, Bielawski C W, Geng J X . ACS Nano, 2016,10:5189. https://www.ncbi.nlm.nih.gov/pubmed/27087146

doi: 10.1021/acsnano.6b00673 pmid: 27087146
[7]
Sun J H, Xiao L H, Meng D L, Geng J X, H Y . Chem. Commun., 2013,49:5538. https://www.ncbi.nlm.nih.gov/pubmed/23586076

doi: 10.1039/c3cc40563j pmid: 23586076
[8]
Meng D L, Yang S J, Sun D M, Zeng Y, Sun J H, Li Y, Yan S K, Huang Y, Bielawski C W, Geng J X . Chem. Sci., 2014,5:3130.
[9]
Yang S J, Meng D L, Sun J H, Hou W P, Ding Y B, Jiang S D, Huang Y, Huang Y, Geng J X . ACS Appl. Mater. Interfaces, 2014,6:7686. https://www.ncbi.nlm.nih.gov/pubmed/24730434

doi: 10.1021/am500973m pmid: 24730434
[10]
Yang S J, Meng D L, Sun J H, Hou W P, Ding Y B, Jiang S D, Huang Y, Huang Y, Geng J X . RSC Adv., 2014,4:25051.
[11]
Wojciechowski D, Vanfleteren J, Reese E, Hagedorn H W . Microelectron. Reliab., 2000,40:1215.
[12]
Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J . J. Chem. Soc., Chem. Commun., 1977,16:578.
[13]
Tusy C. 武汉大学博士论文(Doctoral Dissertation of Wuhan University) , 2014.
[14]
潘祖仁(Pang Z R) . 高分子化学 (Polymer Chemistry) (第三版)(The Third Edition). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2003.
[15]
单国荣(Shan G R), 杜淼(Du M), 尚玥(Shang Y) . 本体聚合(Bulk Polymerization). 北京:化学工业出版社( Beijing:Chemical Industry Press), 2014.
[16]
Heinze J . Electronically conducting polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
[17]
Diaz A, Kanazawa K K, Gardini G P . Chem. Commun., 1979,14:635.
[18]
Diaz A F, Castillo J I . Chem. Commun., 1980,9:397.
[19]
Nishinaga T, Komatsu K . Org. Biomol. Chem., 2005,3:561. https://www.ncbi.nlm.nih.gov/pubmed/15703786

doi: 10.1039/b418872a pmid: 15703786
[20]
Sugimoto R I, Takeda S, Gu H, Y K, . Chem. Express., 1986,1:635.
[21]
Wallace G G, Spinks G M, Kane-Maguire L A, Teasdale P R , Conductive Electroactive Polymers, 3rd Edition, CRC Press, 2008.
[22]
Mak C S, Cheung W K, Leung Q Y, Wai K C . Macromol. Rapid. Commun., 2010,31:875. https://www.ncbi.nlm.nih.gov/pubmed/21590982

doi: 10.1002/marc.200900890 pmid: 21590982
[23]
Pomerantz M, Yang H, Cheng Y . Macromolecules, 1995,28:5706.
[24]
Pomerantz M, Cheng Y, Kasim R K, Elsenbaumer R L . J. Mater. Chem., 1999,9:2155. https://www.ncbi.nlm.nih.gov/pubmed/26866994

doi: 10.1021/acs.jpcb.5b11966 pmid: 26866994
[25]
Coombs B A, Rutter S R, Goeta A E, Sparkes H A, Batsanov A S, Beeby A . RSC Adv., 2012,2:1870.
[26]
Guillerez S, Bidan G . Synthetic Met., 1998,93:123.
[27]
Hassan J, Schulz E, Gozzi C, Lemaire M . J. Mol. Catal. A-Chem., 2003,195:125.
[28]
Sonogashira K, Tohda Y, Hagihara N . Tetrahedron Lett., 1975,16:4467.
[29]
Wagner P, Jolley K W, Officer D L . Australian Journal of Chemistry, 2011,64:335.
[30]
Yin Y H, Li Z X, Jin J P, Tusy C, Xia J B . Synth. Met., 2013,175:97.
[31]
Bonillo B, Swager T M . J. Am. Chem. Soc., 2012,134:18916. https://www.ncbi.nlm.nih.gov/pubmed/23137337

doi: 10.1021/ja308498h pmid: 23137337
[32]
Balasubramanian A, Ku T C, Shih H P, Suman A, Lin H, Shih T W, Han C C . Polym. Chem., 2014,5:5928.
[33]
Rabek J F, Lucki J, Zuber M, Qu B J, Shi W F . Polymer, 1992,33:4838.
[34]
Iyoda T, Kitano M, Shimidzu T . J. Chem. Soc., Chem. Commun., 1991,22:1618.
[35]
Fujitsuka M, Sato T, Segawa H, Shimidzu T . Chemistry Lett., 1995,24:99.
[36]
Wochnowski C, Metev S . Appl. Surf. Sci., 2002,186:34.
[37]
舒昕(Shu X), 李兆祥(Li Z X), 夏江滨(Xia J B) . 化学进展( Progress in Chemistry), 2015,27(4):385.
[38]
Magat M . Polymer, 1962,3:449. https://www.ncbi.nlm.nih.gov/pubmed/11258754

doi: 10.1002/1522-2683(200102)22:3【-逻*辑*与-】lt;449::AID-ELPS449【-逻*辑*与-】gt;3.0.CO;2-T pmid: 11258754
[39]
Wegner G . Die Makromolekulare Chemie., 1971,145:85.
[40]
Meng H, Perepichka D F, Wudl F, . Angew. Chem. Int. Ed., 2003,42:658. https://www.ncbi.nlm.nih.gov/pubmed/12574998

doi: 10.1002/anie.200390181 pmid: 12574998
[41]
Spencer H J, Berridge R, Crouch D J, Wright S P, Giles M, McCulloch I, Coles S J, Hursthouse M B, Skabara P J . J. Mater. Chem., 2003,13:2075.
[42]
Patra A, Wijsboom Y H, Zade S S . J. Am. Chem. Soc., 2008,130, 6734. https://www.ncbi.nlm.nih.gov/pubmed/18457395

doi: 10.1021/ja8018675 pmid: 18457395
[43]
Lepeltier M, Hiltz J, Lockwood T, Bélanger-Gariépyb F, Perepichka D F . J. Mater. Chem., 2009,19:5167. https://www.ncbi.nlm.nih.gov/pubmed/17458991

doi: 10.1021/jp070377s pmid: 17458991
[44]
Kim B, KohJ K, Kim J, Chi W S, Kim J H . ChemSusChem, 2012,5:2173. https://www.ncbi.nlm.nih.gov/pubmed/22945546

doi: 10.1002/cssc.201200349 pmid: 22945546
[45]
Chen S, Lu B Y, Duan X M, Xu J K . J. Polym. Sci. Pol. Chem., 2012,50:1967.
[46]
Barrès A L, Allain M, Frère P, Batail P . Isr. J. Chem., 2014,54:689.
[47]
Gulprasertrat N, Chapromma J, Aree T, Sritana-anant Y . J. Appl. Polym. Sci., 2015,132:42233.
[48]
Tusy C, Huang L, Jin J, Xia J B . RSC Adv., 2014,4:8011.
[49]
Tusy C, Huang L, Peng K, Xia J B . RSC Adv., 2014,4:29032.
[50]
Tusy C, Peng K, Huang L, Xia J B . RSC Adv., 2015,5:16292.
[51]
Huang L, Peng K, Pei T, Xia J B . RSC Adv., 2015,5:70417.
[52]
Peng K, Pei T, Li Z, Huang L, Xia J B . RSC Adv., 2015,5:103841.
[53]
Peng K, Pei T, N Huang N, Yuan L J, Liu X H, Xia J B . J. Polym. Sci. Pol. Chem., 2018,56:1676.
[54]
Meng H, Perepichka D F, Bendikov M, Wudl F, Pan G Z, Yu W J, Brown S . J. Am. Chem. Soc., 2003,125:15151. https://www.ncbi.nlm.nih.gov/pubmed/14653750

doi: 10.1021/ja037115y pmid: 14653750
[55]
裴童(Pei T), 彭凯(Peng K), 蔡心怡(Cai X Y), 袁良杰(Yuan L J), 夏江滨(Xia J B) . 物理化学学报( Acta Phys. -Chim. Sin.), 2017,33:2550.
[56]
Koh J K, Kim J, Kim B, Kim J H, Kim E . Adv Mater., 2011,23:1641. https://www.ncbi.nlm.nih.gov/pubmed/21472792

doi: 10.1002/adma.201004715 pmid: 21472792
[57]
Chen L, Jin J P, Shu X, Xia J B . J. Power. Sources., 2014,248:1234.
[58]
Yin X, Wu F, Fu N Q, Han J, Chen D L, Xu P, He M, Lin Y . ACS Appl. Mater. Inter., 2013,5:8423.
[59]
Jiang X Q, Yu Z, Zhang Y C, Lai J B, Li J J, Gurzadyan G G, Yang X C, Sun L C . Sci Rep-UK., 2017,7:42564. https://www.ncbi.nlm.nih.gov/pubmed/28211919

doi: 10.1038/srep42564 pmid: 28211919
[60]
Yan B, Matsushita S, Akagi K . J. Mater. Chem. C., 2017,5:3823. https://www.ncbi.nlm.nih.gov/pubmed/32264244

doi: 10.1039/c7tb00306d pmid: 32264244
[61]
Wu F, Xu Z H, Wang Y, Wang M Y . RSC Adv., 2014,4:38797.
[62]
Pisuchpena T, Keaw-onb N, Kitikulvarakornb K, Kusonsongb S, Sritana-ananta Y, Supapholc P, Hovena V P . Eur. Polym. J., 2017,96:452.
[63]
Pati P B, Zade S S . RSC Adv., 2014,4:17022.
[64]
Ding B, Chang Z, Wang J, Dou H, Zhang X G . RSC Adv., 2016,6:47858.
[65]
Jia P, Hu T D, He Q B, Cao X, Ma J P, Fan J B, Chen Q, D Y H, Jeffrey P and G J X . ACS Appl. Mater. Inter., 2019,11:3087. https://www.ncbi.nlm.nih.gov/pubmed/30586280

doi: 10.1021/acsami.8b19593 pmid: 30586280
[66]
Gao X, Dong B, Chen S, Chen B X, Xiao X Y, Zhou J B, Su X, Zou D C . ChemElectroChem., 2016,3:1746. http://doi.wiley.com/10.1002/celc.201600350

doi: 10.1002/celc.201600350
[67]
Walczak R M, And J K L, Reynolds J R . Macromolecules., 2008,41:691. https://pubs.acs.org/doi/10.1021/ma071589q

doi: 10.1021/ma071589q
[68]
Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L J, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P . Nat. Chem., 2017,9:563. https://www.ncbi.nlm.nih.gov/pubmed/28537590

doi: 10.1038/nchem.2696 pmid: 28537590
[1] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[2] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[3] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[4] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[5] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[6] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[7] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[8] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[9] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[10] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[11] Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng. Preparation and Application of Fe3O4 Nanomaterials [J]. Progress in Chemistry, 2017, 29(11): 1366-1394.
[12] Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing. Solid Oxide Electrolyzer Cells [J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[13] Jin Yi, Sun Xin, Yu Yan, Ding Chuxiong, Chen Chunhua, Guan Yibiao. Research Progress in Sodium-Ion Battery Materials for Energy Storage [J]. Progress in Chemistry, 2014, 26(04): 582-591.
[14] Zhang Huamin Zhang Yu Liu Zonghao Wang Xiaoli. Redox Flow Battery Technology [J]. Progress in Chemistry, 2009, 21(11): 2333-2340.
[15] Zhou Li1**,Sun Yan1,Su Wei1,Zhou Yaping2. Studies on the Chemical Principle and Capacity of Carbon Nanotubes as Energy Storage Materials [J]. Progress in Chemistry, 2005, 17(04): 660-665.