中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 286-294 DOI: 10.7536/PC170729 Previous Articles   Next Articles

• Review •

The Classification of Electrofluorochromism Materials and Color Change Mechanisms

Jin Du1, Rui Liao1, Xinglin Zhang1, Huibin Sun1*, Wei Huang1,2   

  1. 1. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
    2. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21504040) and the Natural Science Foundation of Jiangsu Higher Education Institutions(No. 15KJB150012).
PDF ( 1718 ) Cited
Export

EndNote

Ris

BibTeX

Electrofluorochromism(EFC) refers to a phenomenon that luminescence color of materials can be tuned by the application of an extra electric field, of which the fluorescence is generally switched between ON/OFF or different colors under an electrical stimulus. These materials have received increasing attention because of their extensive applications in ion sensing, information display, bioanalysis, optical imaging, information storage and so on. It is rather remarkable that EFC materials are considered to be prospective smart materials because they can convert electrical signals to more intuitive visual signals. Herein recent research progress in electrofluorochromism field are reviewed, which mainly elaborates the main EFC materials including dyads, fluorophores and polymers(including conjugated polymers) and their emission-color changing mechanism. Structure features of those EFC materials and their functional realization principles in specific applications are highlighted. Those materials have high luminescence contrast, fast response rate, long term stability and exhibit multicolor emissions switching of fluorescence and a number of advantages and have found applications in organic optoelectronic devices field. At the end of the paper, a brief overview of the future directions of this research field is also presented.
Contents
1 Introduction
2 Electrofluorochromism mechanism
3 Classification of electrofluorochromism materials
3.1 Dyads
3.2 Electroswitchable fluorophores
3.3 Fluorescent conjugated polymers
4 Conclusion

CLC Number: 

[1] Wan X H, Xu C Y. Sci. China. Chem., 2017, 60:1.
[2] Ling Y, Xiang C L, Zhou G. J. Mater. Chem. C, 2017, 5:290.
[3] Park S I, Quan Y J, Kim S H, Kim H, Kim S, Chun D M, Lee C S, Taya M, Chu W S, Ahn S H. KSPE and Springer, 2016, 3:397.
[4] Al-Kutubi H, Zafarani H R, Rassaei L, Mathwig K. Eur. Polym. J., 2016, 83:478.
[5] Audebert P, Miomandre F. Chem. Sci., 2013, 4:575.
[6] Sun J, Chen Y N, Liang Z Q. Adv. Funct. Mater., 2016, 26:2783.
[7] Zhang Y M, Li W, Wang X, Yang B, Li M, Zhang S X. Chem. Commun., 2014, 50:1420.
[8] Nakamura K, Kanazawa K, Kobayashi N. Chem. Commun., 2011, 47:10064.
[9] Bill N L, Lim J M, Davis C M, Bahring S, Jeppesen J O, Kim D, Sessler J L. Chem. Commun., 2014, 50:6758.
[10] Thakur V K, Ding G Q, Ma J, Lee P S, Lu X H. Adv. Mater., 2012, 24:4071.
[11] Rosseinsky D R, Mortimer R J. Adv. Mater., 2001, 13:783.
[12] Lim H, Seo S, Pascal S, Bellier Q, Rigaut S, Park C, Shin H, Maury O, Andraud C, Kim E. Sci. Rep., 2016, 6:18867.
[13] Mortimer R J. Annu. Rev. Mater. Res., 2011, 41:241.
[14] Goulle V, Harriman A, Lehn J M. J. Chem. Soc. Chem. Commun., 1993, 12:1034.
[15] Swager T M. Acc. Chem. Res., 1998, 31:201.
[16] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107:1339.
[17] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100:2537.
[18] Zhou Q, Swager T M. J. Am. Chem. Soc.,1995,117:7017.
[19] Wang S, Gaylord B S, Bazan G C. J. Am. Chem. Soc., 2004, 126:5446.
[20] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120:5321.
[21] Wu J H, Liou G S. Adv. Funct. Mater., 2014, 24:6422.
[22] Kuo C P, Chang C L, Hu C W, Chuang C N, Ho K C, Leung M K. Appl. Mater. Interfaces, 2014, 6:17402.
[23] Yen H J, Liou G S. Chem. Commun., 2013, 49:9797.
[24] Miomandre F, Pansu R B, Audibert J F, Guerlin A, Mayer C R. Electro.Commun., 2012, 20:83.
[25] Martinez R, Ratera I, Tarraga A, Molina P, Veciana J. Chem. Commun., 2006, 36:3809.
[26] Zhang R L, Wang Z L, Wu Y S, Fu H B, Yao J N. Org Lett., 2008, 10:3065.
[27] Zhou Q, Audebert P, Clavier G, Méallet-Renault R, Miomandre F, Shaukat Z, Vu T T, Tang J. J. Phys. Chem. C, 2011, 115:21899.
[28] Seo S G, Kim Y, Zhou Q, Clavier G, Audebert P, Kim E K. Adv. Funct. Mater., 2012, 22:3556.
[29] Canevet D, Salle M, Zhang G X, Zhang D Q, Zhu D B. Chem. Commun., 2009, 17:2245.
[30] Salverda J M, Patil A V, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G W, Davis J J, Heering H A, Aartsma T J. Angew. Chem. Int. Ed., 2010, 49:5776.
[31] Tanaka H, Shizu K, Miyazaki H, Adachi C. Chem. Commun., 2012, 48:11392.
[32] Yang X, Seo S G, Park C H, Kim E K. Macromolecules, 2014, 47:7043.
[33] Clavier G, Audebert P. Chem. Rev., 2010, 110:3299.
[34] Kim Y, Do J, Kim E, Clavier G, Galmiche L, Audebert P. Journal of Electroanalytical Chemistry, 2009, 632:201.
[35] Quinton C, Alain-Rizzo V, Dumas-Verdes C, Miomandre F, Audebert P. Electrochimica Acta, 2013, 110:693.
[36] Kawano K, Nagayoshi K, Yamaki T, Adachi C. Org. Electron., 2014, 15:1695.
[37] Benniston A C, Copley G, Elliott K J, Harringto R W, Clegg W. European Journal of Organic Chemistry, 2008, 16:2705.
[38] Illos R A, Shamir D, Shimon L J W, Zilbermann I, Bittner S. Tetrahedron Lett., 2006, 47:5543.
[39] Kierat R M, Thaler B M, Kramer R. Bioorg. Med. Chem. Lett., 2010, 20:1457.
[40] Beneduci A, Cospito S, La D M, Veltri L, Chidichimo G. Nat Commun, 2014, 5:3105.
[41] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990,347:539.
[42] Gesquiere A J, Park S J, Barbara P F. J. Phys. Chem. B, 2004, 108: 10301.
[43] Montilla F, Mallavia R. J. Phys. Chem. B, 2006, 110:25791.
[44] Yoo J, Kwon T, Sarwade B D, Kim Y, Kim E. Appl. Phys. Lett., 2007, 91:241107.
[45] Iwan A, Sek D. Prog. Poly. Sci., 2011, 36:1277.
[46] Montilla F, Pastor I, Mateo C R, Morallo E, Mallavia R. J. Phys. Chem. B, 2006, 110: 5914.
[47] Montilla F, Esquembre R, Gomez R, Blanco R, Segura J L.J. Phys. Chem. C, 2008, 112:16668.
[48] Ding G Q, Zhou H, Xu J W, Lu X H. Chem. Commun., 2014, 50:655.
[49] Kuo C P, Chang C L, Hu C W, Chuang C N, Ho K C, Leung M K. Appl. Mater. Interfaces, 2014, 6:17402.
[50] Ding G Q, Lin T T, Zhou R, Dong Y L, Xu J W, Lu X H.Chem. Eur. J., 2014, 20:13226.
[51] Beneduci A, Cospito S, Deda M L, Chidichimo G. Adv. Funct. Mater., 2015, 25:1240.
[52] Kuo C P, Leung M K. Phys. Chem. Chem. Phys., 2014, 16:79.
[53] Xiang C L, Wan H, Zhu M J, Chen Y J, Peng J, Zhou G. Appl. Mater. Interfaces, 2017, 9:8872.
[54] Seo S G, Pascal S, Park C, Shin K, Yang X, Maury O, Sarwade B D, Andraud C, Kim E K. Chem. Sci., 2014, 5:1538.
[55] Toal S J, Jones K A, Magde D, Trogler W C. J. Am. Chem. Soc., 2005, 127:11661.
[56] Zhu L Y, Wu W W, Zhu M Q, Han J J, Hurst J K, Li A D Q. J. Am. Chem. Soc., 2007, 129:3524.
[57] Lee Y, Park S, Han S W, Lim T G, Koh W G. Biosens. Bioelectron., 2012, 35:243.
[58] Kobayashi H, Choyke P L. Acc. Chem. Res., 2011, 44:83.
[59] Kim Y, Kim Y, Kim S, Kim E. ACS Nano, 2010, 4:5277.
[60] Koppelhuber A, Bimber O. Opt. Express., 2013, 21:4796.
[61] Sun H B, Liu S J, Lin W P, Zhang K Y, Lv W, Huang X, Huo F W, Yang H R, Jenkins G, Zhao Q, Huang W. Nat. Commun., 2014, 5:3601.
[1] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[2] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[6] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[7] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[8] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[9] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[10] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[11] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[12] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[13] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[14] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[15] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.