中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1799-1807 DOI: 10.7536/PC150636 Previous Articles   Next Articles

• Review and comments •

The Application of DNA Biosensor Based on Conjugated Polymers

Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*   

  1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Jiangsu Province Transformation of Scientific and Technological Achievements Program (No. BA2014123) and the National Major Scientific Instruments and Equipment Development Projects(No. 2014YQ060773).
PDF ( 1044 ) Cited
Export

EndNote

Ris

BibTeX

Conjugated polymers, with π electron systems and highly delocalized conjugated structures, exhibit excellent luminescence properties. The polymer chains can work as molecular wire, which will lead to the amplification of optical signals and thus improve the detecting sensitivity. Aptamer has advantages in specificity, affinity with targets and signal transmission, hence, nucleic acid biosensors based on conjugated polymers have witnessed a rapid development in bio-detection. The applications of nucleic acid biosensors based on conjugated polymers in recent years are summarized. Finally, an outlook of the developing trend for these sensors is given.

Contents
1 Introduction
2 The sensing mechanism of fluorescent sensor
3 FRET
3.1 Detection of complementary DNA
3.2 Real-time monitoring of DNA hybridization
3.3 Real-time monitoring of DNA structure
3.4 Detection of protein and the activity of enzyme
3.5 Detection of specific gene
4 Aggregation and conformation change
4.1 Detection of complementary DNA
4.2 Real-time monitoring of DNA hybridization
4.3 Real-time monitoring of DNA structure
4.4 Detection of enzyme
4.5 Detection of specific DNA sequence
4.6 Detection of metal ion
5 Superquenching
6 Conclusion

CLC Number: 

[1] Gaylord B S, Heeger A J, Bazan G C. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(17): 10954.
[2] Liu Y, Ogawa K, Schanze K S. J. Photoch. Photobio. C, 2009, 10(4): 173.
[3] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100(7): 2537.
[4] Burrezo P M, Pelado B, Ortiz R P, De la Cruz P, Navarrete J T L, Langa F, Casado J. Chem.Eur. J., 2015, 21(4): 1713.
[5] Farcas A, Aubert P H, Mohanty J, Lazar A I, Cantin S, Nau W M. Eur. Polym. J., 2015, 62: 124.
[6] Farcas A, Resmerita A M, Aubert P H, Ghosh I, Cantin S, Nau W M. Macromol. Chem. Phys., 2015, 216(6): 662.
[7] Ghosh D, Chattopadhyay N. J. Lumin., 2015, 160: 223.
[8] Li P L, Di Stasio F, Eda G, Fenwick O, McDonnell S O, Anderson H L, Chhowalla M, Cacialli F. ChemPhysChem, 2015, 16(6): 1258.
[9] Bunka D H J, Stockley P G. Nat. Rev. Microbiol., 2006, 4(8): 588.
[10] Bigwood D W, Heller S R, Wolf W R, Schubert A, Holden J M. Anal. Chim. Acta, 1987, 200(1): 411.
[11] Gold L. Harvey lectures, 1995, 91: 47.
[12] Jayasena S D. Clin. Chem., 1999, 45(9): 1628.
[13] Klug S J, Famulok M. Mol. Biol. Rep., 1994, 20(2): 97.
[14] Liu X F, Fan Q L, Huang W. Biosens. Bioelectron., 2011, 26(5): 2154.
[15] Huang Y Q, Fan Q L, Zhang G W, Chen Y, Lu X M, Huang W. Polymer, 2006, 47(15): 5233.
[16] Li J, Huang Y Q, Qin W S, Liu X F, Huang W. Polymer Chemistry, 2011, 2(6): 1341.
[17] Lan M H, Liu W M, Wang Y, Ge J C, Wu J S, Zhang H Y, Chen J H, Zhang W J, Wang P F. ACS Appl. Mater. Interfaces, 2013, 5(6): 2283.
[18] 支俊格(Zhi J G), 徐秀玲(Xu X L), 申进波(Shen J B), 赵玮(Zhao W), 佟斌(Tong B), 董宇平(Dong Y P). 化学进展(Prog.Chem.), 2009, (04): 739.
[19] Liu R X, Tan Y, Zhang C L, Wu J T, Mei L, Jiang Y Y, Tan C Y. J. Mater. Chem. B, 2013, 1(10): 1402.
[20] 黄艳琴(Huang Y Q), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog.Chem.), 2008, (04): 574.
[21] 汪凌云(Wang L Y), 曹德榕(Cao D R). 化学进展(Prog.Chem.), 2010, (05): 905.
[22] Liu B, Wang S, Bazan G C, Mikhailovsky A. J. Am. Chem. Soc., 2003, 125(44): 13306.
[23] Hwang D H, Lee J D, Kang J M, Lee S, Lee C H, Jin S H. J. Mater. Chem., 2003, 13(7): 1540.
[24] Huang Y Q, Fan Q L, Lu X M, Fang C, Liu S J, Yu-Wen L H, Wang L H, Huang W. Journal of Polymer Science Part A-Polymer Chemistry, 2006, 44(19): 5778.
[25] Bumagin N A, Sukhomlinova L I, Luzikova E V, Tolstaya T P, Beletskaya I P. Tetrahedron. Lett., 1996, 37(6): 897.
[26] Liang Z, Cabarcos O M, Allara D L, Wang Q. Adv. Mater., 2004, 16(9/10): 823.
[27] Furukawa Y, Cha Y H, Noguchi T, Ohnishi T, Tasumi M. Journal of Molecular Structure, 2000, 521: 211.
[28] Sakaguchi T, Sato M, Hashimoto T. Polymer, 2013, 54(9): 2272.
[29] Herland A, Nilsson K P R, Olsson J D M, Hammarstrom P, Konradsson P, Inganas O. J. Am. Chem. Soc., 2005, 127(7): 2317.
[30] Nilsson K P R, Olsson J D M, Stabo-Eeg F, Lindgren M, Konradsson P, Inganas O. Macromolecules, 2005, 38(16): 6813.
[31] Ho H A, Boissinot M, Bergeron M G, Corbeil G, Dore K, Boudreau D, Leclerc M. Angew. Chem. Int. Ed., 2002, 41(9): 1548.
[32] Gaylord B S, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2003, 125(4): 896.
[33] He F, Tang Y L, Yu M H, Wang S, Li Y L, Zhu D B. Adv. Funct. Mater., 2007, 17(6): 996.
[34] Yu M H, Tang Y L, He F, Wang S, Zheng D G, Li Y H, Zhu D B. Macromol. Rapid Commun., 2006, 27(20): 1739.
[35] Xing C F, Yu M H, Wang S, Shi Z Q, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28(3): 241.
[36] Yu M H, He F, Tang Y, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28(12): 1333.
[37] An L L, Tang Y L, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2006, 27(13): 993.
[38] Duan X R, Li Z P, He F, Wang S. J. Am. Chem. Soc., 2007, 129(14): 4154.
[39] Zhou R Y, Xu C, Dong J, Wang G J. Biosens. Bioelectron., 2015, 65: 103.
[40] Liu Z W, Wang H L, Cotlet M. Chem. Mater., 2014, 26(9): 2900.
[41] Wang B, Yang Q, Liu L B, Wang S. Colloid Surf. B-Biointerfaces, 2011, 85(1): 8.
[42] Pu K Y, Liu B. Adv. Funct. Mater., 2009, 19(9): 1371.
[43] Feng X L, Duan X R, Liu L B, An L L, Feng F D, Wang S. Langmuir, 2008, 24(21): 12138.
[44] Wang C, Tang Y L, Liu Y, Guo Y. Anal. Chem., 2014, 86(13): 6433.
[45] Wang C, Tang Y L, Guo Y. ACS Appl. Mater. Interfaces, 2014, 6(23): 21686.
[46] Lian S, Liu C H, Zhang X B, Wang H H, Li Z P. Biosens. Bioelectron., 2015, 66: 316.
[47] Wang J, Liu B. Chem. Commun., 2009, (17): 2284.
[48] Wang Y Y, Zhang Y, Liu B. Anal. Chem., 2010, 82(20): 8604.
[49] Wang Y Y, Liu B. Biosens. Bioelectron., 2009, 24(11): 3293.
[50] Wang Y Y, Liu B. Langmuir, 2009, 25(21): 12787.
[51] Huang Y Q, Yao X, Zhang R, Lang O Y, Jiang R C, Liu X F, Song C X, Zhang G W, Fan Q L, Wang L H, Huang W. ACS Appl. Mater. Interfaces, 2014, 6(21): 19144.
[52] An L L, Liu L B, Wang S. Biomacromolecules, 2009, 10(2): 454.
[53] Zhan R Y, Fang Z, Liu B. Anal. Chem., 2010, 82(4): 1326.
[54] Sommers C D, Keire D A. Anal. Chem., 2011, 83(18): 7102.
[55] Sommers C D, Mans D J, Mecker L C, Keire D A. Anal. Chem., 2011, 83(9): 3422.
[56] Sommers C D, Ye H P, Kolinski R E, Nasr M, Buhse L F, Al-Hakim A, Keire D A. Anal. Bioanal. Chem., 2011, 401(8): 2445.
[57] Lan M H, Wu J S, Liu W M, Zhang W J, Ge J C, Zhang H Y, Sun J Y, Zhao W W, Wang P F. J. Am. Chem. Soc., 2012, 134(15): 6685.
[58] Guo Y Q, Chen Y X, Wei Y L, Li H H, Dong C. Spectrochim. Acta, 2015, 136: 1635.
[59] Li C, Numata M, Takeuchi M, Shinkai S. Angew. Chem. Int. Ed., 2005, 44(39): 6371.
[60] Nilsson K P R, Herland A, Hammarstrom P, Inganas O. Biochemistrys, 2005, 44(10): 3718.
[61] Plante M P, Berube E, Bissonnette L, Bergeron M G, Leclerc M. ACS Appl. Mater. Interfaces, 2013, 5(11): 4544.
[62] Lan M H, Liu W M, Ge J C, Wu J S, Sun J Y, Zhang W J, Wang P F. Spectrochim. Acta, 2015, 136: 871.
[63] Guan H L, Zhou P, Zeng S, Zhou X L, Wang Y, He Z K. Talanta, 2009, 79(2): 153.
[64] Ma Y, Xia Y, Yan L Q, Wang F, Miao Z H, Cui M F, Yao H T, Qi Z J, Anal. Methods, 2015, 7: 5814.
[65] Liu M, Li B X, Cui X. Biosens. Bioelectron., 2013, 47: 26.
[66] Wang L H, Liu X F, Yang Q, Fan Q L, Song S P, Fan C H, Huang W. Biosens. Bioelectron., 2010, 25(7): 1838.
[67] Ren X S, He F, Xu Q H. Asian J. Chem., 2010, 5(5): 1094.
[68] Ho H A, Leclerc M. J. Am. Chem. Soc., 2004, 126(5): 1384.
[69] Jia Y M, Zuo X L, Lou X D, Miao M, Cheng Y, Min X H, Li X C, Xia F. Anal. Chem., 2015, 87(7):3890.
[70] Liu Z, Wang H L, Cotlet M. Chem. Commun., 2014, 50(77): 11311.
[71] Xing X J, Zhou Y, Liu X G, Tang H W, Pang D W. Analyst, 2013, 138(21): 6301.
[72] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19(13): 1662.
[73] Qin C J, Wong W Y, Wang L X. Macromolecules, 2011, 44(3): 483.
[74] Fan C H, Wang S, Hong J W, Bazan G C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(11): 6297.
[75] Jones R M, Lu L D, Helgeson R, Bergstedt T S, McBranch D W, Whitten D G. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(26): 14769.
[76] Lu L D, Helgeson R, Jones R M, McBranch D, Whitten D. J. Am. Chem. Soc., 2002, 124(3): 483.
[77] Lu L D, Jones R M, McBranch D, Whitten D. Langmuir, 2002, 18(20): 7706.
[78] Kushon S A, Bradford K, Marin V, Suhrada C, Armitage B A, McBranch D, Whitten D. Langmuir, 2003, 19(16): 6456.
[79] Srinivas A R G, Peng H, Barker D, Travas-Sejdic J. Biosens. Bioelectron., 2012, 35(1): 498.
[80] Srinivas A R G, Barker D, Travas-Sejdic J. Int. J. Nanotechnol., 2014, 11(5/8): 645.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yanqun Shan, Xiaoying Wang*. Electrochemical Aptasensor for Detection of Ochratoxin A [J]. Progress in Chemistry, 2018, 30(6): 797-808.
[3] Jin Du, Rui Liao, Xinglin Zhang, Huibin Sun, Wei Huang. The Classification of Electrofluorochromism Materials and Color Change Mechanisms [J]. Progress in Chemistry, 2018, 30(2/3): 286-294.
[4] Lu Xiaomei, Li Jie, Hu Wenbo, Deng Weixing, Fan Quli, Huang Wei. Recent Advances of the Water-Soluble Conjugated Polymer Brushes [J]. Progress in Chemistry, 2016, 28(4): 528-540.
[5] Sun Pengfei, Hou Huanzhi, Fan Quli, Huang Wei. Synthesis and Application of Water-Soluble Conjugated Glycopolymer [J]. Progress in Chemistry, 2016, 28(10): 1489-1500.
[6] Chen Yun, Shao Ya, Fan Lijuan. Fluorescent Color Tuning of Conjugated Polymer Materials: Mechanisms and Methods [J]. Progress in Chemistry, 2014, 26(11): 1801-1810.
[7] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.
[8] Chen Zhouqun, Ma Chang-Qi. Synthesis of Poly(3-Alkylthiophene)s [J]. Progress in Chemistry, 2013, 25(07): 1166-1176.
[9] Cai Xiaohui, Shi Lin, Liu Xingfen*, Huang Yanqin, Fan Quli, Huang Wei*. Functionalized Conjugated Polymers and Their Application in the Biological and/or Chemical Analysis [J]. Progress in Chemistry, 2013, 25(06): 975-989.
[10] Zhang Lihong, Yu Qingcai, Wan Junhua*. Silole-Containing Polymer Photovoltaic Donor Materials [J]. Progress in Chemistry, 2013, 25(05): 752-760.
[11] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[12] Zhang Huijing, Hou Xin. Development of Organic Polymer/Inorganic Semiconductor Hybrid Solar Cells [J]. Progress in Chemistry, 2012, 24(11): 2106-2115.
[13] Liang Miao, Liu Rui, Su Rongxin, Qi Wei, Wang Libing, He Zhimin. Aptamer-Based Sensing Technology Towards Food Safety Analysis [J]. Progress in Chemistry, 2012, 24(07): 1378-1387.
[14] Liu Zhitian, Hu Zhao, Shen Zhi, Hu Shuangqiang, Wang Zixing, Qi Xin. Optoelectronic Properties of Silole-Containing Polymers [J]. Progress in Chemistry, 2012, 24(0203): 377-384.
[15] Yang Qunfeng, Liu Jianyun, Chen Huaping, Wang Xianxiang, Huang Qianming, Shan Zhi. Preparation of Noble Metallic Nanoclusters and Its Application in Biological Detection [J]. Progress in Chemistry, 2011, 23(5): 880-892.