中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 838-854 DOI: 10.7536/PC200622 Previous Articles   Next Articles

• Original article •

Preparation and Application of Conjugated Microporous Polymers

Yubing Wang1, Jie Chen2, Wei Yan1,*(), Jianwen Cui3   

  1. 1 Department of Environmental Science and Engineering, Xi'an Jiaotong University,Xi'an 710049, China
    2 College of Environment and Resources, Fuzhou University,Fuzhou 350116, China
    3 Xinjiang Zhixin Technology Co.Ltd, Urumqi 830011, China
  • Received: Revised: Online: Published:
  • Contact: Wei Yan
  • Supported by:
    National Natural Science Foundation of China(51978569)
Richhtml ( 84 ) PDF ( 1201 ) Cited
Export

EndNote

Ris

BibTeX

As a unique class within the versatile family of microporous materials, compared with ordinary conjugated polymers or porous materials, conjugated microporous polymers(CMPs) not only have π-conjugated framework but also have many micropores. Since their discovery in 2007, CMPs have been intensively studied as an important subclass of porous materials, and various interesting properties and possible applications have been discovered and described. A wide range of chemical reactions, building blocks and synthetic method offer a tremendous number of CMPs with different properties and specific structures, which drives the rapid growth of the field. CMPs have shown great potential in solving energy and environmental problems, in particular, they have demonstrated huge application prospect in gas adsorption, heterogeneous catalysis, light emittance, sensing, energy storage and biological applications. Since first discovered, CMPs are unparalleled among porous materials because they possess extended π-conjugated backbones along with the chemical and thermal stability. Nowadays, the possibility to produce solvent processable CMPs or to generate thin films on electrodes all makes CMPs an exciting field for further research. In this review, we present the recent significant breakthroughs and the conventional functions and practices in the field of CMPs to find useful applications. We start with an initial historical look at origins of porous materials and a briefly contrast between CMPs and other porous materials. Then, we present an exhaustive analysis of the design strategies with special emphasis on the topologies of amorphous porous organic materials. As following, we discuss the chemical synthesis of CMPs that gives access to a range of potential applications, with a focus on the up-to-date overview of the main fields. Finally, we give an outlook of the challenges and restrictions which CMPs research in the future. We also draw some comparisons between CMPs and the growing range of conjugated crystalline covalent organic frameworks(COFs).

Contents

1 Introduction

2 Design of conjugated microporous polymers

2.1 Topology design

2.2 Structure design of conjugated microporous polymers

3 Synthesis of conjugated microporous polymers

3.1 Synthetic reaction principles

3.2 Synthetic methods

3.3 The influence of various variables on the synthesis products during the reaction

4 Applications of conjugated microporous polymers

4.1 Gas adsorption and storage

4.2 Gas separation

4.3 Adsorption of heavy metal, dyes, solvents and other chemicals

4.4 Heterogeneous catalysis

4.5 Light emitters

4.6 Chemosensors

4.7 Electrical energy storage

4.8 Biocomplex

5 Conclusion and outlook

Fig. 1 Glass network bearing composition of A2O3. Black circles represent A atoms, and white circles represent oxygen atoms[32]. Copyright 1932 American Chemical Society.
Fig. 2 (a) Structural model for PAF-1 with dia topology[15]. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;(b) CRN model for amorphous silica. Silicon and oxygen atoms are colored yellow and red, respectively.;(c) Amorphous model of PAF-1 [33]. Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 3 Schematic representation of reactions for the synthesis of CMPs
Fig. 4 Schematic representation of the synthesis of a soluble CMP[49]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 5 (left) The structure of 3-TBTBP(precursor of CMT);(right) A free-standing CMT membrane with a diameter of ~47 mm[57]. Copyright 2020, Springer Nature
Fig. 6 Preparation of the microporous organic nanotube networks with amino functionality[73]. Copyright 2016, Royal Society of Chemistry(Great Britain)
Fig. 7 Schematic representation of the synthesis of spirobifluorene-based CMPs using linkers of different geometries[74]. Copyright 2009, Elsevier
Fig. 8 Schematic representation of the synthesis of triazine-based porous polymers[75]. Copyright? 2009, American Chemical Society
Fig. 9 Schematic representation of the synthesis of PTPA[79]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 1 Hydrogen storage with some CMPs
Table 2 Carbon dioxide storage in some CMPs
Table 3 Methane storage in some CMPs
Fig. 10 (left) The structure of CMPAO;(right) The photographs of CMPAO-4 in the column exposed to UV light before and after uranyl adsorption[142]. Copyright 2019, Royal Society of Chemistry
Fig. 11 Schematic representation of Graphene-Based Conjugated Microporous Polymers.[149] Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Han S, Wu D Q, Li S, Zhang F, Feng X L. Adv. Mater., 2014, 26(6):849.

doi: 10.1002/adma.v26.6
[2]
Slater A G, Cooper A I. Science, 2015, 348(6238):8075.
[3]
Xu S J, mLiang L Y, Li B Y, Luo Y L, Liu C M, Tan B E. Prog. Chem., 2011, 23(10):2085.
( 徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩. 化学进展, 2011, 23(10):2085.)
[4]
Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38(5):1213.

doi: 10.1039/b903811f
[5]
Das S, Heasman P, Ben T, Qiu S L. Chem. Rev., 2017, 117(3):1515.

doi: 10.1021/acs.chemrev.6b00439
[6]
Tan L X, Tan B E. Acta Chim. Sinica, 2015, 73(06):530.

doi: 10.6023/A15020096
( 谭良骁, 谭必恩. 化学学报, 2015, 73(06):530.)
[7]
Tsyurupa M P, Davankov V A. React. Funct. Polym., 2006, 66(7):768.

doi: 10.1016/j.reactfunctpolym.2005.11.004
[8]
Tan L X, Tan B E. Chem. Soc. Rev., 2017, 46(11):3322.

doi: 10.1039/C6CS00851H
[9]
Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E. Chem. Commun., 2004(2):230.
[10]
McKeown N B, Budd P M. Macromolecules, 2010, 43(12):5163.

doi: 10.1021/ma1006396
[11]
Jiang J X, Su F B, Trewin A, Wood C, Campbell N, Niu H J, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew. Chem. Int. Ed., 2007, 46(45):8574.

doi: 10.1002/anie.v46:45
[12]
Xu Y H, Jin S B, Xu H, Nagai A, Jiang D L. Chem. Soc. Rev., 2013, 42(20):8012.

doi: 10.1039/c3cs60160a
[13]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18):3450.

doi: 10.1002/(ISSN)1521-3773
[14]
Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Chem. Mater., 2013, 25(9):1542.

doi: 10.1021/cm303751n
[15]
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J, Qiu S L, Zhu G S. Angewandte Chemie Int. Ed., 2009, 48(50):9457.

doi: 10.1002/anie.200904637
[16]
Konstas K, Taylor J W, Thornton A W, Doherty C M, Lim W X, Bastow T J, Kennedy D F, Wood C D, Cox B J, Hill J M, Hill A J, Hill M R. Angew. Chem. Int. Ed., 2012, 51(27):6639.

doi: 10.1002/anie.201201381
[17]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751):1166.

doi: 10.1126/science.1120411
[18]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10):16068.

doi: 10.1038/natrevmats.2016.68
[19]
Holst J R, Trewin A, Cooper A I. Nat. Chem., 2010, 2(11):915.

doi: 10.1038/nchem.873
[20]
Hasell T, Cooper A I. Nat. Rev. Mater., 2016, 1(9):16053.

doi: 10.1038/natrevmats.2016.53
[21]
Xu S J, Luo Y L, Tan B E. Macromol. Rapid Commun., 2013, 34(6):471.

doi: 10.1002/marc.v34.6
[22]
Lee J S M, Cooper A I. Chem. Rev., 2020, 120(4):2171.

doi: 10.1021/acs.chemrev.9b00399
[23]
Ren S J, Dawson R, Laybourn A, Jiang J X, Khimyak Y, Adams D J, Cooper A I. Polym. Chem., 2012, 3(4):928.

doi: 10.1039/c2py00585a
[24]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352):673.

doi: 10.1126/science.aan0202
[25]
Jiang J X, Su F B, Trewin A, Wood C D, Niu H J, Jones J T A, Khimyak Y Z, Cooper A I. J. Am. Chem. Soc., 2008, 130(24):7710.

doi: 10.1021/ja8010176
[26]
Cooper A I. Adv. Mater., 2009, 21(12):1291.

doi: 10.1002/adma.v21:12
[27]
Bildirir H, Osken I, Ozturk T, Thomas A. Chem. Eur. J., 2015, 21(26):9306.

doi: 10.1002/chem.v21.26
[28]
Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Chem. Soc. Rev., 2017, 46(11):3302.

doi: 10.1039/C7CS00071E
[29]
Wang H G, Cheng Z H, Liao Y Z, Li J H, Weber J, Thomas A, Faul C F J. Chem. Mater., 2017, 29(11):4885.

doi: 10.1021/acs.chemmater.7b00857
[30]
Cairns A B, Goodwin A L. Chem. Soc. Rev., 2013, 42(12):4881.

doi: 10.1039/c3cs35524a
[31]
Stachurski Z H, Welberry T R. Metall. Mater. Trans. A, 2011, 42(1):14.

doi: 10.1007/s11661-010-0270-y
[32]
Zachariasen W H. J. Am. Chem. Soc., 1932, 54(10):3841.

doi: 10.1021/ja01349a006
[33]
Trewin A, Cooper A. Angewandte Chemie Int. Ed., 2010, 49(9):1533.

doi: 10.1002/anie.200906827
[34]
Yassin A, Trunk M, Czerny F, Fayon P, Trewin A, Schmidt J, Thomas A. Adv. Funct. Mater., 2017, 27(26):1700233.

doi: 10.1002/adfm.v27.26
[35]
Nguyen T D, Phillips C L, Anderson J A, Glotzer S C. Comput. Phys. Commun., 2011, 182(11):2307.

doi: 10.1016/j.cpc.2011.06.005
[36]
Todorov I T, Smith W, Trachenko K, Dove M T. J. Mater. Chem., 2006, 16(20):1911.

doi: 10.1039/b517931a
[37]
Xu D, Sun L, Li G, Shang J, Yang R X, Deng W Q. Chem. Eur. J., 2016, 22(23):7944.

doi: 10.1002/chem.201504666
[38]
Kuhn P, Forget A, Su D S, Thomas A, Antonietti M. J. Am. Chem. Soc., 2008, 130(40):13333.

doi: 10.1021/ja803708s
[39]
Bhunia A, Vasylyeva V, Janiak C. Chem. Commun., 2013, 49(38):3961.

doi: 10.1039/c3cc41382a
[40]
Ren S J, Bojdys M J, Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I. Adv. Mater., 2012, 24(17):2357.

doi: 10.1002/adma.201200751
[41]
Zhang W, Li C, Yuan Y P, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Mater. Chem., 2010, 20(31):6413.

doi: 10.1039/c0jm01392g
[42]
Zhang W, Liang F, Li C, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 186(2/3):984.

doi: 10.1016/j.jhazmat.2010.11.093
[43]
Cao Q, Chen Q, Han B H. Acta Chim. Sinica, 2015, 73(06):541.

doi: 10.6023/A15020126
( 操强, 陈琦, 韩宝航. 化学学报. 2015, 73(06):541.)
[44]
Kou Y, Xu Y H, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2011, 50(37):8753.

doi: 10.1002/anie.201103493
[45]
Palma-Cando A, Scherf U. Macromol. Chem. Phys., 2016, 217(7):827.

doi: 10.1002/macp.v217.7
[46]
Li C Y, Ward A L, Doris S E, Pascal T A, Prendergast D, Helms B A. Nano Lett., 2015, 15(9):5724.

doi: 10.1021/acs.nanolett.5b02078
[47]
McKeown N B, Budd P M. Chem. Soc. Rev., 2006, 35(8):675.

pmid: 16862268
[48]
Zhou B L, Chen L. Acta Chimica Sin., 2015, 73(6):487.
( 周宝龙, 陈龙. 化学学报, 2015, 73(6):487.)

doi: 10.6023/A15020090
[49]
Cheng G, Hasell T, Trewin A, Adams D J, Cooper A I. Angew. Chem. Int. Ed., 2012, 51(51):12727.

doi: 10.1002/anie.201205521
[50]
He Q, Zhang C, Li X, Wang X, Mou P, Jiang J X. Acta Chim. Sinica, 2018, 76(3):202.

doi: 10.6023/A17110477
( 贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴. 化学学报, 2018, 76(3):202.)

doi: 10.6023/A17110477
[51]
Deng S, Zhi J, Zhang X M, Wu Q Q, Ding Y, Hu A G. Angew. Chem. Int. Ed., 2014, 53(51):14144.

doi: 10.1002/anie.v53.51
[52]
Gu C, Huang N, Gao J, Xu F, Xu Y H, Jiang D L. Angew. Chem. Int. Ed., 2014, 53(19):4850.

doi: 10.1002/anie.201402141
[53]
Karan S, Jiang Z, Livingston A G. Science, 2015, 348(6241):1347.

doi: 10.1126/science.aaa5058
[54]
Jimenez-Solomon M F, Song Q L, Jelfs K E, Munoz-Ibanez M, Livingston A G. Nat. Mater., 2016, 15(7):760.

doi: 10.1038/nmat4638 pmid: 27135857
[55]
Lindemann P, Schade A, Monnereau L, Feng W, Batra K, Gliemann H, Levkin P, Bräse S, Wöll C, Tsotsalas M. J. Mater. Chem. A, 2016, 4(18):6815.

doi: 10.1039/C5TA09429A
[56]
Lindemann P, Tsotsalas M, Shishatskiy S, Abetz V, Krolla-Sidenstein P, Azucena C, Monnereau L, Beyer A, Gölzhäuser A, Mugnaini V, Gliemann H, Bräse S, Wöll C. Chem. Mater., 2014, 26(24):7189.

doi: 10.1021/cm503924h
[57]
Liu W, Jiang S D, Yan Y G, Wang W S, Li J, Leng K, Japip S, Liu J T, Xu H, Liu Y P, Park I H, Bao Y, Yu W, Guiver M D, Zhang S, Loh K P. Nat. Commun., 2020, 11:1633.

doi: 10.1038/s41467-020-15503-6
[58]
Ju P Y, Wu S J, Su Q, Li X D, Liu Z Q, Li G H, Wu Q L. J. Mater. Chem. A, 2019, 7(6):2660.

doi: 10.1039/C8TA11330K
[59]
Wu K Y, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(20):6013.

doi: 10.1002/anie.v55.20
[60]
Bavykina A V, Olivos-Suarez A I, Osadchii D, Valecha R, Franz R, Makkee M, Kapteijn F, Gascon J. ACS Appl. Mater. Interfaces, 2017, 9(31):26060.

doi: 10.1021/acsami.7b07339
[61]
Liu H H, Wan D C, Du J, Jin M. ACS Appl. Mater. Interfaces, 2015, 7(37):20885.

doi: 10.1021/acsami.5b06283
[62]
Ye Y L, Jin M, Wan D C. J. Mater. Chem. A, 2015, 3(25):13519.

doi: 10.1039/C5TA02925B
[63]
Kim J G, Cha M C, Lee J, Choi T, Chang J Y. ACS Appl. Mater. Interfaces, 2017, 9(43):38081.

doi: 10.1021/acsami.7b14807
[64]
Kim D Y, Choi T J, Kim J G, Chang J Y. ACS Omega, 2018, 3(8):8745.

doi: 10.1021/acsomega.8b01416
[65]
Liu J, Tobin J M, Xu Z T, Vilela F. Polym. Chem., 2015, 6(41):7251.

doi: 10.1039/C5PY00772K
[66]
Yang X J, Tan L X, Xia L L, Wood C D, Tan B E. Macromol. Rapid Commun., 2015, 36(17):1553.

doi: 10.1002/marc.201500235
[67]
Tan L X, Tan B E. Chem. Eng. J., 2020, 390:124485.

doi: 10.1016/j.cej.2020.124485
[68]
He Z D, Zhong A Q, Zhang H, Xiong L F, Xu Y, Wang T Q, Zhou M H, Huang K. Macromol. Rapid Commun., 2016, 37(19):1566.

doi: 10.1002/marc.v37.19
[69]
Zhou M H, Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Huang K. RSC Adv., 2016, 6(90):87745.

doi: 10.1039/C6RA18836B
[70]
Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Zhou M H, Huang K. Polym. Chem., 2016, 7(30):4975.

doi: 10.1039/C6PY01052K
[71]
Xu Y, Wang T Q, He Z D, Zhong A Q, Huang K. Microporous Mesoporous Mater., 2016, 229:1.

doi: 10.1016/j.micromeso.2016.04.013
[72]
Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Huang K. New J. Chem., 2016, 40(9):7282.

doi: 10.1039/C6NJ01457G
[73]
Xu Y, Wang T Q, He Z D, Zhong A Q, Huang K. RSC Adv., 2016, 6(46):39933.

doi: 10.1039/C6RA05753E
[74]
Schmidt J, Werner M, Thomas A. Macromolecules, 2009, 42(13):4426.

doi: 10.1021/ma9005473
[75]
Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1):319.

doi: 10.1021/ma802322j
[76]
Tan D Z, Fan W J, Xiong W N, Sun H X, Cheng Y Q, Liu X Y, Meng C G, Li A, Deng W Q. Macromol. Chem. Phys., 2012, 213(14):1409.

doi: 10.1002/macp.201290042
[77]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.

doi: 10.1126/science.1102896
[78]
Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I. Macromolecules, 2010, 43(20):8524.

doi: 10.1021/ma101541h
[79]
Chen J, Yan W, Townsend E J, Feng J T, Pan L, Del Angel Hernandez V, Faul C F J. Angew. Chem. Int. Ed., 2019, 58(34):11715.

doi: 10.1002/anie.v58.34
[80]
Zhao Y F, Yao K X, Teng B Y, Zhang T, Han Y. Energy Environ. Sci., 2013, 6(12):3684.

doi: 10.1039/c3ee42548g
[81]
Talapaneni S N, Kim D, Barin G, Buyukcakir O, Je S H, Coskun A. Chem. Mater., 2016, 28(12):4460.

doi: 10.1021/acs.chemmater.6b01667
[82]
Chen L, Yang Y, Jiang D L. J. Am. Chem. Soc., 2010, 132(26):9138.

doi: 10.1021/ja1028556
[83]
Wu Z S, Chen L, Liu J Z, Parvez K, Liang H W, Shu J, Sachdev H, Graf R, Feng X L, Müllen K. Adv. Mater., 2014, 26(9):1450.

doi: 10.1002/adma.201304147
[84]
He Y F, Gehrig D, Zhang F, Lu C B, Zhang C, Cai M, Wang Y Y, Laquai F, Zhuang X D, Feng X L. Adv. Funct. Mater., 2016, 26(45):8255.

doi: 10.1002/adfm.201603693
[85]
Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Nat. Commun., 2013, 4:1960.

doi: 10.1038/ncomms2960
[86]
Jiang J X, Trewin A, Adams D J, Cooper A I. Chem. Sci., 2011, 2(9):1777.

doi: 10.1039/c1sc00329a
[87]
Xu Y H, Nagai A, Jiang D L. Chem. Commun., 2013, 49(16):1591.

doi: 10.1039/C2CC38211C
[88]
Xu Y H, Chen L, Guo Z Q, Nagai A, Jiang D L. J. Am. Chem. Soc., 2011, 133(44):17622.

doi: 10.1021/ja208284t
[89]
Sun L B, Zou Y C, Liang Z Q, Yu J H, Xu R R. Polym. Chem., 2014, 5(2):471.

doi: 10.1039/C3PY00980G
[90]
Li Z P, Li H, Xia H, Ding X S, Luo X L, Liu X M, Mu Y. Chem. Eur. J., 2015, 21(48):17355.

doi: 10.1002/chem.201502241
[91]
Geng T M, Zhu H, Song W, Zhu F, Wang Y. J. Mater. Sci., 2016, 51(8):4104.

doi: 10.1007/s10853-016-9732-y
[92]
Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L. Chem. Commun., 2014, 50(37):4788.

doi: 10.1039/C4CC01002G
[93]
Zhang C, He Y W, Mu P, Wang X, He Q, Chen Y, Zeng J H, Wang F, Xu Y H, Jiang J X. Adv. Funct. Mater., 2018, 28(4):1705432.

doi: 10.1002/adfm.201705432
[94]
Li Z H, Feng X C, Gao S T, Jin Y, Zhao W C, Liu H F, Yang X J, Hu S Q, Cheng K, Zhang J C. ACS Appl. Bio Mater., 2019, 2(2):613.

doi: 10.1021/acsabm.8b00676
[95]
Lu W G, Yuan D Q, Zhao D, Schilling C I, Plietzsch O, Muller T, Braäse S, Guenther J, Bluümel J, Krishna R, Li Z, Zhou H C. Chem. Mater., 2010, 22(21):5964.

doi: 10.1021/cm1021068
[96]
Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37(4):530.

doi: 10.1016/j.progpolymsci.2011.09.002
[97]
Dawson R, Stöckel E, Holst J R, Adams D J, Cooper A I. Energy Environ. Sci., 2011, 4(10):4239.

doi: 10.1039/c1ee01971f
[98]
Zeng W, Zhang Y, Zhao X B, Qin M L, Li X Y, Jin W S, Zhang D Q. Polymer, 2019, 174:96.

doi: 10.1016/j.polymer.2019.04.069
[99]
Yu M, Wang X Y, Yang X, Zhao Y, Jiang J X. Polym. Chem., 2015, 6(17):3217.

doi: 10.1039/C5PY00295H
[100]
Xu C, Xu Z, Lu Q Q, Shao M C, Zhou J H, Gai L G. ACS Sustainable Chem. Eng., 2019, 7(22):18341.
[101]
Giri A, Hussain M W, Sk B, Patra A. Chem. Mater., 2019, 31(20):8440.

doi: 10.1021/acs.chemmater.9b02563
[102]
Qiao S L, Li Z, Zhang B Y, Li Q Q, Jin W, Zhang Y R, Wang W B, Li Q, Liu X W. Microporous Mesoporous Mater., 2019, 284:205.

doi: 10.1016/j.micromeso.2019.03.042
[103]
Fu S Q, Yao J S, Yang Z Z, Sun H Q, Liu W L. J. Mater. Sci., 2018, 53(14):10469.

doi: 10.1007/s10853-018-2243-2
[104]
Li Y C, Li W Z, Cheng Z H, He Y, Li H M, Li H X, Liao Y Z. Chem. Nano. Mat., 2020, 6(1):58.
[105]
Xu G J, Zhu Y A, Xie W, Zhang S R, Yao C, Xu Y H. Chem. Asian J., 2019, 14(19):3259.

doi: 10.1002/asia.v14.19
[106]
Li H M, Li J H, Thomas A, Liao Y Z. Adv. Funct. Mater., 2019, 29(40):1904785.

doi: 10.1002/adfm.v29.40
[107]
Rong M, Yang L R, Wang L, Yu J M, Qu H N, Liu H Z. J. Colloid Interface Sci., 2019, 548:265.

doi: 10.1016/j.jcis.2019.04.036
[108]
Zhang B, Yan J, Li G, Wang Z G. Polym. Chem., 2019, 10(24):3371.

doi: 10.1039/C9PY00465C
[109]
Wang Z, Ma H, Zhai T L, Cheng G, Xu Q, Liu J M, Yang J K, Zhang Q M, Zhang Q P, Zheng Y S, Tan B E, Zhang C. Adv. Sci., 2018, 5(7):1800141.

doi: 10.1002/advs.201800141 pmid: 30027046
[110]
Yang X, Yu M, Zhao Y, Zhang C, Wang X Y, Jiang J X. J. Mater. Chem. A, 2014, 2(36):15139.

doi: 10.1039/C4TA02782E
[111]
Yao C, Cui D, Zhu Y A, Xie W, Zhang S R, Xu G J, Xu Y H. New J. Chem., 2019, 43(18):6838.

doi: 10.1039/C9NJ00688E
[112]
Xiang Z H, Cao D P, Wang W C, Yang W T, Han B Y, Lu J M. J. Phys. Chem. C, 2012, 116(9):5974.

doi: 10.1021/jp300137e
[113]
El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M. Science, 2007, 316(5822):268.

doi: 10.1126/science.1139915
[114]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990):424.

doi: 10.1126/science.1192160
[115]
Qian Q H, Asinger P A, Lee M J, Han G, Mizrahi Rodriguez K, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16):8161.

doi: 10.1021/acs.chemrev.0c00119
[116]
Lv B, Guo B S, Zhou Z M, Jing G H. Environ. Sci. Technol., 2015, 49(17):10728.

doi: 10.1021/acs.est.5b02356
[117]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20):10575.

doi: 10.1021/cr5002589
[118]
Wang K K, Huang H L, Liu D H, Wang C, Li J P, Zhong C L. Environ. Sci. Technol., 2016, 50(9):4869.

doi: 10.1021/acs.est.6b00425
[119]
Yu S J, Wang X X, Pang H W, Zhang R, Song W C, Fu D, Hayat T, Wang X K. Chem. Eng. J., 2018, 333:343.

doi: 10.1016/j.cej.2017.09.163
[120]
Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6):2428.

doi: 10.1021/jacs.6b12328
[121]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y C, Wei H, Nguyen N, Wojtas L, Ma S Q. J. Am. Chem. Soc., 2017, 139(7):2786.

doi: 10.1021/jacs.6b12885
[122]
Chen J, Wang Y B, Ye C S, Lyu W, Zhu J W, Yan W, Qiu T. ACS Appl. Mater. Interfaces, 2020, 12(25):28681.

doi: 10.1021/acsami.0c07059
[123]
Ning G H, Chen Z X, Gao Q, Tang W, Chen Z X, Liu C B, Tian B B, Li X, Loh K P. J. Am. Chem. Soc., 2017, 139(26):8897.

doi: 10.1021/jacs.7b02696
[124]
Dawson R, Laybourn A, Clowes R, Khimyak Y Z, Adams D J, Cooper A I. Macromolecules, 2009, 42(22):8809.

doi: 10.1021/ma901801s
[125]
Li A, Sun H X, Tan D Z, Fan W J, Wen S H, Qing X J, Li G X, Li S Y, Deng W Q. Energy Environ. Sci., 2011, 4(6):2062.

doi: 10.1039/c1ee01092a
[126]
Liu X M, Xu Y H, Guo Z Q, Nagai A, Jiang D L. Chem. Commun., 2013, 49(31):3233.

doi: 10.1039/c3cc41082j
[127]
Liu Y Z, Zuo Y M, Li S, Li J N, Li L, Liu C X, Ashraf S, Li P F, Wang B. J. Mater. Chem. A, 2019, 7(38):21953.

doi: 10.1039/C9TA07193H
[128]
Wang C A, Wang W. Acta Chim. Sinica, 2015, 73(6):498.

doi: 10.6023/A15010019
( 王昌安, 王为. 化学学报. 2015, 73(6):498.)

doi: 10.6023/A15010019
[129]
Zhao W, Jiao Y Z, Li J J, Wu L P, Xie A M, Dong W. J. Catal., 2019, 378:42.

doi: 10.1016/j.jcat.2019.07.056
[130]
Chen L, Yang Y, Guo Z Q, Jiang D L. Adv. Mater., 2011, 23(28):3149.

doi: 10.1002/adma.v23.28
[131]
Jiang J X, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak Y Z, Xiao J L, Higgins S J, Adams D J, Cooper A I. Angew. Chem. Int. Ed., 2011, 50(5):1072.

doi: 10.1002/anie.v50.5
[132]
Wang X P, Zhao X D, Dong W B, Zhang X H, Xiang Y G, Huang Q Y, Chen H. J. Mater. Chem. A, 2019, 7(27):16277.

doi: 10.1039/C9TA04018H
[133]
Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113(7):5322.

doi: 10.1021/cr300503r
[134]
Wan G, Fu Y H, Guo J N, Xiang Z H. Acta Chim. Sinica, 2015, 73(6):557.

doi: 10.6023/A15020106
( 万刚, 付宇昂, 郭佳宁, 向中华. 化学学报, 2015, 73(6):557.)

doi: 10.6023/A15020106
[135]
Meier C B, Sprick R S, Monti A, Guiglion P, Lee J S M, Zwijnenburg M A, Cooper A I. Polymer, 2017, 126:283.

doi: 10.1016/j.polymer.2017.04.017
[136]
Zhang W J, Tang J T, Yu W G, Huang Q, Fu Y, Kuang G C, Pan C Y, Yu G P. ACS Catal., 2018, 8(9):8084.

doi: 10.1021/acscatal.8b01478
[137]
Wang L, Wan Y Y, Ding Y J, Wu S K, Zhang Y, Zhang X L, Zhang G Q, Xiong Y J, Wu X J, Yang J L, Xu H X. Adv. Mater., 2017, 29(38):1702428.

doi: 10.1002/adma.201702428
[138]
Yuan S W, Dorney B, White D, Kirklin S, Zapol P, Yu L P, Liu D J. Chem. Commun., 2010, 46(25):4547.

doi: 10.1039/c0cc00235f
[139]
Wang X S, Liu J, Bonefont J M, Yuan D Q, Thallapally P K, Ma S Q. Chem. Commun., 2013, 49(15):1533.

doi: 10.1039/c2cc38067f
[140]
Yang R X, Wang T T, Deng W Q. Sci. Rep., 2015, 5(1):10155.

doi: 10.1038/srep10155
[141]
Xiang L, Zhu Y L, Gu S, Chen D Y, Fu X, Zhang Y D, Yu G P, Pan C Y, Hu Y H. Macromol. Rapid Commun., 2015, 36(17):1566.

doi: 10.1002/marc.201500159 pmid: 26088466
[142]
Xu M Y, Wang T, Gao P, Zhao L, Zhou L, Hua D B. J. Mater. Chem. A, 2019, 7(18):11214.

doi: 10.1039/C8TA11764K
[143]
Xiang Z H, Cao D P. Macromol. Rapid Commun., 2012, 33(14):1184.

doi: 10.1002/marc.201100865
[144]
Li L, Zhang B Y, Liu F X, Xue Z H, Lu X Q, Liu X H. Sensor Actuat. B: Chem., 2020, 306:127560.

doi: 10.1016/j.snb.2019.127560
[145]
Li Z, Zhang J T, Lou X W D. Angew. Chem. Int. Ed., 2015, 54(44):12886.

doi: 10.1002/anie.v54.44
[146]
Xu J, Yu F T, Hua J L, Tang W Q, Yang C, Hu S Z, Zhao S L, Zhang X S, Xin Z, Niu D F. Chem. Eng. J., 2020, 392:123694.

doi: 10.1016/j.cej.2019.123694
[147]
Frackowiak E, Béguin F. Carbon, 2001, 39(6):937.

doi: 10.1016/S0008-6223(00)00183-4
[148]
Zhang C, Qiao Y, Xiong P X, Ma W Y, Bai P X, Wang X, Li Q, Zhao J, Xu Y F, Chen Y, Zeng J H, Wang F, Xu Y H, Jiang J X. ACS Nano, 2019, 13(1):745.

doi: 10.1021/acsnano.8b08046
[149]
Zhuang X D, Zhang F, Wu D Q, Forler N, Liang H W, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X L. Angew. Chem. Int. Ed., 2013, 52(37):9668.

doi: 10.1002/anie.201304496
[150]
Liao Y Z, Wang H G, Zhu M F, Thomas A. Adv. Mater., 2018, 30(12):1705710.

doi: 10.1002/adma.v30.12
[151]
Fu Z W, Wang X Y, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L J, Li X B, Vogel A, Clowes R, Bilton M, Chen L J, Sprick R S, Cooper A I. Chem. Sci., 2020, 11(2):543.

doi: 10.1039/C9SC03800K
[152]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352):673.

doi: 10.1126/science.aan0202
[153]
Jin E Q, Lan Z A, Jiang Q H, Geng K Y, Li G S, Wang X C, Jiang D L. Chem, 2019, 5(6):1632.

doi: 10.1016/j.chempr.2019.04.015
[154]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416):813.

doi: 10.1126/science.aat9777
[155]
Kornienko N, Zhang J Z, Sakimoto K K, Yang P D, Reisner E. Nat. Nanotechnol., 2018, 13(10):890.

doi: 10.1038/s41565-018-0251-7 pmid: 30291349
[156]
Ma Y, Zhou Y, Du W Q, Liao Z H, Qi Z J. Prog. Chem., 2015, 27(12):1799.
( 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 化学进展, 2015, 27(12):1799.)

doi: 10.7536/PC150636
[157]
Sakimoto K K, Wong A B, Yang P. Science, 2016, 351(6268):74.

doi: 10.1126/science.aad3317
[158]
Cestellos-Blanco S, Zhang H, Yang P D. Faraday Discuss., 2019, 215:54.

doi: 10.1039/c8fd00187a
[159]
Wang F, Ren F, Ma D, Mu P, Wei H J, Xiao C H, Zhu Z Q, Sun H X, Liang W D, Chen J X, Chen L H, Li A. J. Mater. Chem. A, 2018, 6(1):266.

doi: 10.1039/C7TA09405A
[160]
Babu H V, Bai M G M, Rajeswara Rao M. ACS Appl. Mater. Interfaces, 2019, 11(12):11029.

doi: 10.1021/acsami.8b19087
[161]
Sprick R S, Jiang J X, Bonillo B, Ren S J, Ratvijitvech T, Guiglion P, Zwijnenburg M A, Adams D J, Cooper A I. J. Am. Chem. Soc., 2015, 137(9):3265.

doi: 10.1021/ja511552k
[162]
Li L W, Cai Z X, Wu Q H, Lo W Y, Zhang N, Chen L X, Yu L P. J. Am. Chem. Soc., 2016, 138(24):7681.

doi: 10.1021/jacs.6b03472
[163]
Wang X Y, Chen L J, Chong S Y, Little M A, Wu Y Z, Zhu W H, Clowes R, Yan Y, Zwijnenburg M A, Sprick R S, Cooper A I. Nat. Chem., 2018, 10(12):1180.

doi: 10.1038/s41557-018-0141-5
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.