中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 601-615 DOI: 10.7536/PC171134 Previous Articles   Next Articles

• Review •

Chiral Calixarenes and Their Supramolecular Chirality

Jun Luo2, YanSong Zheng1*   

  1. 1. Key Laboratory of Energy Transformation and Storage Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21072067, 21673089) and the Fundamental Research Funds for the Central Universities (No.2015ZDTD055).
PDF ( 1626 ) Cited
Export

EndNote

Ris

BibTeX

Calixarenes are concave molecules consisting of phenol units and linking methylenes. Due to facile modification and controllable conformations, calixarenes are regarded as the third generation of host molecules. At molecular level, chiral calixarenes can be classified into calixarenes with chiral subunits, inherently chiral calixarenes, and bridging chiral calixarenes, according to the structural feature of the chirality elements. At supramolecular level, calixarenes can self-assemble or assemble with other molecules or ions into nanoscale aggregates of diverse topologies in solution, solid state, and two-dimensional surface, through non-covalent bonds. The study on chiral calixarenes and their supramolecular chirality not only has theoretical significance in chiral structures, origin of chirality, and so on, but also shows great potential in chiral sensors, chiral catalysts, chiral separation materials, chiral vehicles, and chiral nano-materials etc. This review focuses on the progress in the design, synthesis, structure, and function of representative calixarenes with molecular chirality and supramolecular chirality in the last decade. Emphasis is laid on the advantages of calixarene skeletons in forming novel molecular chirality and supramolecular chirality as well as in realizing specific and novel functions. It is expected that more exceptional chiral calixarene molecules and chiral calixarene supramolecular materials will be obtained as advancement of synthetic technology and supramolecular designs in calixarene studies.
Contents
1 Introduction
2 Calixarenes with chiral subunits
2.1 As solvating reagents
2.2 As gelators
2.3 As asymmetric catalysts
3 Inherently chiral calixarenes
3.1 Upper rim/Lower rim-substituted
3.2 Meta-substituted
3.3 Calixarenes containing chiral methylene bridge carbon
4 Calixarene supramolecular chirality
4.1 Supramolecular chirality driven by acid-base reaction
4.2 Supramolecular chirality driven by electrostatic attraction
4.3 Supramolecular chirality driven by hydrogen bonding
4.4 Supramolecular chirality driven by coordination
4.5 Supramolecular chirality driven by van der Waals interaction
4.6 Supramolecular chirality driven by π-π interaction
4.7 Supramolecular chirality driven by inclusion
5 Conclusion and outlook

CLC Number: 

[1] Gutsche C. Calixarenes:An introduction. Cambridge:RSC Publishing, 2008.
[2] Neri P, Sessler J L, Wang M X. Calixarenes and Beyond. Cham:Springer International Publishing, 2016.
[3] Szumna A. Chem. Soc. Rev., 2010, 39, 4274.
[4] Luo J, Zheng Y S. Curr. Org. Chem., 2012, 16:483.
[5] 罗钧(Luo J),郑企雨(Zheng Q Y),陈传峰(Chen C F),黄志镗(Huang Z T). 化学进展(Progress in Chemistry), 2006, 18(7):897.
[6] Zheng Y S, Luo J. J. Incl. Phenom. Macrocycl. Chem., 2011, 71:35.
[7] Zheng Y S, Zhang C. Org. Lett., 2004, 6:1189.
[8] Durmaz M, Yilmaz M, Sirit A.Org. Biomol. Chem., 2011, 9:571.
[9] Zhou J L, Chen X J, Zheng Y S. Chem. Commun., 2007, 5200.
[10] Zheng Y S, Ran S Y, Hu Y J, Liu X X. Chem. Commun., 2009, 1121.
[11] Nandi P, Solovyov A, Okrut A, Katz A. ACS Catal., 2014, 4:2492.
[12] Bonaccorso C, Brancatelli G, Ballistreri F P, Geremia S, Pappalardo A, Tomaselli G A, Toscano R M, Sciotto D. Dalton Trans., 2014, 43:2183.
[13] De Simone N A, Schettini R, Talotta C, Gaeta C, Izzod I, Sala D G, Neri P. Eur. J. Org. Chem., 2017, 2017(37):5649.
[14] Li Z Y, Chen Y, Zheng C Q, Yin Y, Wang L, Sun X Q. Tetrahedron, 2017, 73:78.
[15] Akceylan E, Uyanik A, Eymurd S, Sahin O, Yilmaz M. Applied Catalysis A:General, 2015, 499:205.
[16] Cao Y D, Luo J, Zheng Q Y, Chen C F, Wang M X, Huang Z T. J. Org. Chem., 2004, 69:2016.
[17] Luo J, Zheng Q Y, Chen C F, Huang Z T. Chem. Eur. J., 2005, 11:5917.
[18] Luo J, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron, 2005, 61:8517.
[19] Xia Y X, Zhou H H, Shi J, Li S Z, Zhang M, Luo J, Xiang G Y. J. Incl. Phenom. Macrocycl. Chem., 2012, 74:277.
[20] Shi J, Li S Z, Xia Y X, Wang X G, Luo J, Wan Q. J. Incl. Phenom. Macrocycl. Chem., 2013, 77:327.
[21] Yang K, Li S Z, Wang Y H, Zhang W Z, Xu Z H, Zhou X Y, Zhu R X, Luo J, Wan Q. RSC Adv., 2014, 4:6517.
[22] Li S Z, Shi J, Yang K, Luo J. Tetrahedron, 2012, 68:8557.
[23] Li S Z, Yang K, Liu H B, Xia Y X, Zhu R X, Luo J, Wan Q. Tetrahedron Lett., 2013, 54:5901.
[24] Zhang W Z, Ma H, Xiang G Y, Luo J, Chung W S. Chemistry Select., 2016, 1:2486.
[25] Zhang W Z, Yang K, Li S Z, Ma H, Luo J, Wang K P, Chung W S. Eur. J. Org. Chem., 2015, 765.
[26] Ma H, Zhang W Z, Luo J, Liu J M, Xiang G Y. J. Incl. Phenom. Macrocycl. Chem., 2017, 89:91.
[27] Yakovenko A V, Boyko V I, Danylyuk O, Suwinska K, Lipkowski J, Kalchenko V I. Org. Lett., 2007, 9:1183.
[28] Shu C M, Chung W S, Wu S H, Ho Z C, Lin L G. J. Org. Chem., 1999, 64:2673.
[29] Kliachyan M A, Yesypenko O A, Pirozhenko V V, Shishkina S V, Shishkin O V, Boyko V I, Kalchenko V I. Tetrahedron, 2009, 65:7085.
[30] Wang J H, Chen Y C, Zheng Y S, Shen C H. J. Incl. Phenom. Macrocycl. Chem., 2014, 80:449.
[31] Shirakawa S, Kimura T, Murata S I, Shimizu S. J. Org. Chem., 2009, 74:1288.
[32] Shirakawa S, Shimizu S. New J. Chem., 2010, 34:1217.
[33] Ciaccia M, Tosi I, Cacciapaglia R, Casnati A, Baldini L, Di Stefano S. Org. Biomol. Chem., 2013, 11:3642.
[34] Miao R, Zheng Q Y, Chen C F, Huang Z T. J. Org. Chem., 2005, 70:7662.
[35] Miao R, Xu Z X, Huang Z T, Chen C F. Sci. China B. Chem., 2009, 52:505.
[36] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9:4447.
[37] Xu Z X, Zhang C, Yang Y, Chen C F, Huang Z T. Org. Lett., 2008, 10:477.
[38] Xu Z X, Li G K, Chen C F, Huang Z T. Tetrahedron, 2008, 64:8668.
[39] Herbert S A, Arnott G E. Org. Lett., 2009, 11:4986.
[40] Herbert S A, Arnott G E. Org. Lett., 2010, 12:4600.
[41] Herbert S A, Castell D C, Clayden J, Arnott G E. Org. Lett., 2013, 15:3334.
[42] Castell D C, Lesotho N, Nikolayenko V I, Arnott G E. Eur. J. Org. Chem., 2017, 2017:4328.
[43] Flidrova K, Bohm S, Dvorakova H, Eigner V, Lhotak P. Org. Lett., 2014, 16:138.
[44] Slavik P, Kohout M, Bohm S, Eigner V, Lhotak P. Chem. Commun., 2016, 52:2366.
[45] Tlusty M, Slavik P, Kohout M, Eigner V, Lhotak P. Org. Lett., 2017, 19:2933.
[46] Troisi F, Pierro T, Gaeta C, Carratu M, Neri P. Tetrahedron Lett., 2009, 50:4416.
[47] Gaeta C, Troisi F, Talotta C, Pierro T, Neri P. J. Org. Chem., 2012, 77:3634.
[48] De Rosa M, Soriente A, Concilio G, Talotta C, Gaeta C, Neri P. J. Org. Chem., 2015, 80:7295.
[49] Gopalsamuthiram V, Huang R, Wulff W D. Chem. Commun., 2010, 46:8213.
[50] An F J, Xu W Q, Zheng S, Ma S K, Li S Y, Wang R L, Liu J M. Eur. J. Org. Chem., 2016, 1012.
[51] Xu W Q, Liu W S, Yan J X, Ma S K, Guo J, Liu J M, Wang R L, Li S Y. J. Org. Chem., 2016, 81:10683.
[52] Zheng Y S, Ji A, Chen X J, Zhou J L. Chem. Commun., 2007, 32(32):3398.
[53] Fuji S, Sakurai K, Okobira T, Ohta N, Takahara A. Langmuir, 2013, 29:13666.
[54] Prins L J, De Jong F, Timmerman P, Reinhoudt D N. Nature, 2000, 408:181.
[55] Bogdan A, Bolte M, Bohmer V. Chem. Eur. J., 2008, 14:8514.
[56] Mastalerz M, Rivera H J E, Oppel I M, Dyker G. CrystEngComm., 2011, 13:3979.
[57] Martinez-Rodriguez L, Bandeira N A G, Bo C, Kleij A W. Chem. Eur. J., 2015, 21:7144.
[58] Sakamoto S, Fujii S, Yoshida K, Sakurai K. Langmuir, 2016, 32:12434.
[59] D'Urso A, Marino N, Gaeta M, Rizzo M S, Cristaldi D A, Fragala M E, Pappalardo S, Gattuso G, Notti A, Parisi M F, Pisagatti I, Purrello R. New J. Chem., 2017, 41:8078.
[60] Talotta C, De Simone N A, Gaeta C, Neri P. Org. Lett., 2015, 17:1006.
[61] Sun R, Xue C, Ma X D, Gao M, Tian H, Li Q. J. Am. Chem. Soc., 2013, 135:5990.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[11] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[12] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[13] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[14] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[15] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.