中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (12): 1471-1479 DOI: 10.7536/PC170711 Previous Articles   Next Articles

• Review •

Co-Based Catalysts for Carbon Dioxide Reforming of Methane to Synthesis Gas

Junying Lu1, Yu Guo1, Qirui Liu1, Guangzhi Han1, Zhou-jun Wang1,2*   

  1. 1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21776007, 21403012) and the Beijing Natural Science Foundation (No. 2144053).
PDF ( 839 ) Cited
Export

EndNote

Ris

BibTeX

Greenhouse effect has been a pressing challenge for the mankind. The conversion and utilization of greenhouse gases become a difficult research topic with general interest all over the world. In this context, carbon dioxide (CO2) reforming of methane, namely dry reforming has been recognized as an advanced technology with great prospect because it can convert two potent greenhouse gases (CH4/CO2) into valuable synthesis gas (syngas, H2/CO). Commercialization of this technology remains unrealized mainly due to the lack of feasible catalysts. Considering the excellent activity and relatively low cost, transition metal based catalysts are regarded as the most promising candidates. The previous research mainly focuses on Ni-based catalysts. But the Ni-based catalysts are vulnerable to rapid deactivation due to carbon deposition and metal sintering. Recently, Co-based catalysts have been reported to possess excellent catalytic performance. Herein, the progress of Co-based catalysts for CO2 reforming of methane is reviewed. The first section addresses the role of active phases, supports, promoters and synthesis methodologies on catalytic performance. The second section discusses the catalytic mechanism and the formation of coke. The last section proposes the strategies for rational design of improving Co-based reforming catalysts and the research directions of Co-based reforming catalysts in the near future.
Contents
1 Introduction
2 The study of Co-based catalysts
2.1 The role of active phases
2.2 The role of supports
2.3 The role of promoters
2.4 The role of synthesis methodologies
3 Catalytic mechanisms and the formation of coke
3.1 Catalytic mechanisms
3.2 The formation of coke
4 Conclusion and outlook

CLC Number: 

[1] Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40:3703.
[2] Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Catal. Surv. Asia., 2012, 16:183.
[3] Wang Z J, Zhao Y, Cui L, Du H Y, Yao P, Liu C J. Green Chem., 2007, 9:554.
[4] Fischer F, Tropsch H. Brennstoff. Chem., 1928, 3:39.
[5] Pompeo F, Nichio N N, González M G, Montes M. Catal. Today, 2005, 107/108:856.
[6] Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43:7813.
[7] Liu C J, Ye J Y, Jiang J J, Pan Y X. ChemCatChem, 2011, 3:529.
[8] Sun J W, Wang S, Guo Y, Li M Z, Zou H K, Wang Z J. Catal. Commun., 2018, 104:53.
[9] Wen S P, Liang M L, Zou J M, Wang S, Zhu X D, Liu L, Wang Z J. J. Mater. Chem. A, 2015, 3:13299.
[10] Wang Z J, Yan Z, Liu C J, Goodman D W. ChemCatChem, 2011, 3:551.
[11] Wang Z J, Skiles S, Yang F, Yan Z, Goodman D W. Catal. Today, 2012, 181:75.
[12] Ruckenstein E, Wang H Y. J. Catal., 2002, 205:289.
[13] Ibrahim A A, Naeem M A, Fakeeha A H, Khan W U, Al-Fatesh A S, Abasaeed A E. Chem. Eng. Technol., 2015, 38:1397.
[14] Özkara-Aydinoglu S, Aksoylu A E. Catal. Commun., 2010, 11:1165.
[15] Mirzaei F, Rezaei M, Meshkani F, Fattah Z. J. Ind. Eng. Chem., 2015, 21:662.
[16] Wang H Y, Ruckenstein E. Appl. Catal. A:Gen., 2001, 209:207.
[17] 黄传敬(Huang C J). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2000.
[18] Fan M S, Abdullah A Z, Bhatia S. Appl. Catal. B:Environ., 2010, 100:365.
[19] Feng T C, Zheng W T, Sun K Q, Xu B Q. Catal. Commun., 2016, 73:54.
[20] Sengupta S, Ray K, Deo G. Int. J. Hydrogen Energy, 2014, 39:11462.
[21] Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdöhelyi A. Catal. Today, 2014, 228:123.
[22] Itkulova S S, Zhunusova K Z, Zakumbaeva G D. Bull. Korean Chem. Soc., 2005, 26:2017.
[23] San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Appl. Catal. A:Gen., 2009, 371:54.
[24] 马淳安(Ma C A). 上海大学博士论文(Doctoral Dissertation of Shanghai University), 2005.
[25] Shao H F, Kugler E L, Ma A W, Dadyburjor D B. Ind. Eng. Chem. Res., 2007, 44:4914.
[26] Shao H F, Kugler E L, Dadyburjor D B, Rykov S A, Chen J J G. Appl. Catal. A:Gen., 2009, 356:18.
[27] Cheng J M, Huang W. Fuel Process. Technol., 2010, 91:185.
[28] 王莉(Wang L), 敖先权(Ao X Q), 王诗瀚(Wang S H). 化学进展(Progress in Chemistry), 2012, 24:1696.
[29] Ruckenstein E, Wang H Y. Appl. Catal. A:Gen., 2000, 204:257.
[30] Abasaeed A E, Al-Fatesh A S, Naeem M A, Ibrahim A A, Fakeeha A H. Int. J. Hydrogen Energy, 2015, 40:6818.
[31] Ayodele B V, Khan M R, Cheng C K. Int. J. Hydrogen Energy, 2016, 41:198.
[32] Ayodele B V, Khan M R, Lam S S, Cheng C K. Int. J. Hydrogen Energy, 2016, 41:4603.
[33] Ayodele B V, Hossain S S, Lam S S, Osazuwa O U, Khan M R, Cheng C K. J. Nat. Gas Sci. Eng., 2016, 34:873.
[34] Zhang X H, Hu R J, Liu Y F, Zhao J W, Hou L N, Yang D, Hao Z M, Su H Q. Int. J. Hydrogen Energy, 2015, 40:10026.
[35] Djinovi Dc' P, Crnivec I G O, Erjavec B, Pintar A. Appl. Catal. B:Environ., 2012, 125:259.
[36] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359:710.
[37] Abdollahifar M, Haghighi M, Sharifi M. Energ. Convers. Manage., 2015, 103:1101.
[38] Estephane J, Aouad S, Hany S, Khoury B E I, Gennequin C, Zakhem H EI, Nakat J EI, Aboukais A, Abi-Aad E. Int. J. Hydrogen Energy, 2015, 40:9201.
[39] Yuan Q, Yin A X, Luo C, Zhang Y W, Duan W T, Liu H C, Yan C H. J. Am. Chem. Soc., 2008, 130:3465.
[40] Liu S G, Guan L X, Li J P, Zhao N, Wei W, Sun Y H. Fuel, 2008, 87:2477.
[41] Xu L L, Zhao H H,Song H L, Chou L J. Int. J. Hydrogen Energy, 2012, 37:7497.
[42] Xu L L, Zhang X, Chen M D, Qi L, Nie D Y, Ma Y H. Int. J. Hydrogen Energy, 2016, 41:17348.
[43] Gennequin C, Safariamin M, Sihhert S, Aboukais A, Abi-Aad E. Catal. Today, 2011, 176:139.
[44] Cai W J, Qian L P, Yue B, Chen X Y, He H Y. Chinese Chem. Lett., 2013, 24:777.
[45] Zhang G J, Du Y N, Xu Y, Zhang Y F. J. Ind. Eng. Chem., 2014, 20:1677.
[46] Zhang G J, Qu J W, Su A T, Zhang Y F, Xu Y. J. Ind. Eng. Chem., 2015, 21:311.
[47] Zhang G J, Hao L X, Jia Y, Du Y N, Zhang Y F. Int. J. Hydrogen Energy, 2015, 40:12868.
[48] Aldashukurova G B, Mironenko A V, Mansurov Z A, Shikin N V, Yashnik S A, Kuznetsov V V, Ismagilov Z R. J. Energy Chem., 2013, 22:811.
[49] Guo Y, Zou J M, Shi X, Rukundo P, Wang Z J. ACS Sustainable Chem. Eng., 2017, 5:2330.
[50] San-José-Alonso D, Illán-Gómez M J, Román-Martínez M C. Catal. Today, 2011, 176:187.
[51] Usman M, Daud W M A W, Abbas H F. Renew. Sust. Energ. Rev., 2015, 45:710.
[52] Ewbank J L, Kovarik L, Kenvin C C, Sievers C. Green Chem., 2014, 16:885.
[53] Ji L, Tang S, Zeng H C, Lin J, Tan K L. Appl. Catal. A:Gen., 2001, 207:247.
[54] Lee J H, You Y W, Ahn H C, Hong J S, Kim S B, Chang T S, Suh J K. J. Ind. Eng. Chem., 2014, 20:284.
[55] Wang S B, Lu G Q. Energy Fuels, 1996,10:896.
[56] Fan M S, Abdullah A Z, Bhatia S. ChemCatChem, 2009, 1:192.
[57] Wang Z Y, Cao X M, Zhu J H, Hu P. J. Catal., 2014, 311:469.
[58] Budiman A W, Song S H, Chang T S, Choi M J. Adv. Powder Technol., 2016, 27:584.
[59] Foo S Y, Cheng C K, Nguyen T H, Adesina A A. Catal. Today, 2011, 164:221.
[60] Zhang J G, Wang H, Dalai A K. Ind. Eng. Res., 2009, 48:677.
[61] 姜洪涛(Jiang H T), 华炜(Hua W), 计建炳(Ji J B).化学进展(Progress in Chemistry), 2013, 25:859.
[62] Gadalla A M, Bower B. Chem. Eng. Sci., 1988, 43:3049.
[63] Goula M A, Lemonidou A A, Efstathiou A M E. J. Catal., 1996, 161:626.
[64] Shamsi A, Baltrus J R, Spivey J J. Appl. Catal. A:Gen. 2005, 293:145.
[65] 路勇(Lu Y), 邓存(Deng C), 丁雪加(Ding X J), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis), 1995, 16:447.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.